实验。我们通常在一次实验中定量多达 11,000 种蛋白质,这使我们能够全面评估降解剂的功效、评估脱靶效应并确定降解剂的潜在新靶蛋白。在这方面,我们的深度蛋白质组覆盖与可靠的蛋白质定量相结合,对于识别可能对药物发现具有重要意义的低丰度蛋白质(例如转录因子)至关重要。还可以分析降解剂在不同时间点或浓度对整个蛋白质组的影响,以确定其作用的速度和强度以及何时可能发生次级效应。凭借我们的高通量能力,我们可以筛选数千种化合物的降解剂库(有关深度蛋白质组筛选数据的呈现方式的示例,请参见图 1)。
摘要:自发发射是最基本的平衡过程之一,在这种过程中,激发量子的发射极因量子的波动而放松到基态。在此过程中,发出一个可以与附近发射器相互作用并在它们之间建立量子相关的光子,例如,通过超级和亚表达效应。修改这些光子介导的相互作用的一种方法是通过将光子晶体放在它们附近来改变发射极的偶极辐射模式。最近的一个例子是通过使用具有线性等音轮廓和鞍点的带状结构的光子晶体来生成强大的方向散发模式 - 增强超级和次级效应的关键。但是,这些研究主要使用了过度简化的玩具模型,俯瞰了电磁场在实际材料中的复杂性,包括几何依赖性,发射器位置和极化等方面。我们的研究深入研究了这些定向发射模式与上述变量之间的相互作用,从而揭示了未开发的计算量量子量子光学现象。