激光表面结构是一种有效的技术,用于在统一接近或低于统一的铜表面具有二级电子产量(SEY)值。然而,最小化SEY的属性,例如中度深凹槽和重新沉积的纳米颗粒,可能导致不良后果,包括增加射频表面电阻。这项研究系统地检查了有关旨在消除重置吸附的颗粒的不同清洁程序的数据。连续清洁步骤后迭代使用各种分析技术,从而提供了对不断发展的表面特征的见解。收集的实验结果确定了微沟,凹槽方向以及相关颗粒对次级电子产率和表面电阻的明显影响。在凹槽中保持高颗粒物覆盖范围的同时露出波峰会导致SEY值和表面电阻的降低,这表明凹槽的尖端对表面电流密度的影响比凹槽深度更为重要。同时,凹槽中的纳米颗粒对SEY值具有比表面暴露的尖端更重要的影响。
●具有低温和元素分析能力的透射电子显微镜(TEM):配备了Gatan Crotansfer持有者和牛津仪器能量色散X射线光谱仪(EDS)的JEOL JEEL JEM-2100(EDS)。●具有低温和元素分析能力的扫描电子显微镜(SEM):Zeiss Sigma-VP现场发射SEM配备了可变压力,次级电子,透镜和反向散射检测器,Gatan Alto Alto低温制备和加载模块,以及Oxford Encellorments Energy Instruments Energy Encellocts Energy Enstruments Energy Enstruments Energy Enstruments X-Ray Epperersive x-Ray Eppesermate(Eds)。●X射线衍射(XRD):Rigaku X射线衍射仪Ultima IV。●共聚焦拉曼显微镜(CRM):WITEC Alpha 300 R配备有电动XYZ阶段用于大面积摄入,两个激发激光波长(785和532 nm)和10倍至100倍的目标。●高意见筛选系统(HCS):Perkin Elmer Opera Phanix高通量共聚焦荧光显微镜。●傅立叶变换红外光谱仪和显微镜(FTIR):Shimadzu Irtracer-100 FTIR光谱仪,配备了固体和液体的衰减总反射(ATR),适用于传输和反射测量,并与Aimadzu AIM-9000 Microftir系统相结合。●X射线荧光(XRF):Shimadzu EDX-8100 XRF系统,用于粉末,散装和液体样品的元素分析。大气,真空和氦测量值低检测极限。
摘要 - 已经研究了使用光电仪和次级电子排放对相邻太空飞行器的无触觉感测,用于地球同步(GEO)应用。随着越来越多的任务发送到Cislunar空间,该技术也可以扩展到那里。但是,Cislunar环境的复杂性给无触摸潜在的传感技术带来了新的挑战。一个主要问题的时间比地理区域短,而在Cislunar地区可能低至10 m。因此,研究了一个在月球周围短德比区域中带电的航天器周围的电力和电势场的模型。呈现了真空(拉普拉斯)和debye -hückel模型,并使用有效的debye长度来扩展模型并更好地代表环境。先前已经在低地球轨道(LEO),安静的地理和小行星环境中研究了有效的Debye长度,但在Cislunar等离子体环境中尚未发现,并且在远距离距离的距离上可以使用电子排放率更高,比预期的距离更大。一旦建立了有效的DEBYE长度和相关模型,通过在NASCAP-2K中的计算(一种飞船 - 系数相互作用软件)中探索了有效的Debye长度和无触摸潜在传感功能之间的关系。然后使用所开发的方法来确定在具有不可忽略的静电势屏蔽的Cislunar地区被动和主动无触摸电势感应是可行的。
介入放射学在过去几十年中已大大增长,并成为治疗或诊断的重要工具。这项技术主要是有益的,而且掌握了,但可能会发生意外暴露,并导致确定性效应的出现。缺乏对用于这些实践的低能X射线的放射生物学后果的知识,这使得对不同组织的预后非常不确定。为了改善患者的辐射保护并更好地预测并发症的风险,我们实施了一种新的临床前小鼠模型来模仿介入放射学中的放射学燃烧,并对剂量沉积进行了完整的表征。设计了一种新的设置和准直仪,可在80 kV的空气中照射15只小鼠的后腿。辐照后,收集小鼠胫骨以通过电子顺磁共振(EPR)光谱测量来评估骨剂量。在简化和体素化的幻像中进行了带有Geant4的Monte Carlo模拟,以表征不同组织中的剂量沉积,并评估次级电子(能量,路径,动量)的特征。收集了30只小鼠胫骨进行EPR分析。在骨最初在30 Gy的骨中测量了平均剂量为194.0±27.0 Gy。确定空气转化因子为6.5±0.9。样本间和间小鼠的变异性估计为13.9%。蒙特卡洛模拟显示了这些低X射线能量的剂量沉积的异质性和密集组织中的剂量增强。研究了二级电子的特定性,并显示了组织密度对能量和路径的影响。获得了实验和计算出的骨与空气转化因子之间的良好一致性。实施了一种新的临床前模型,允许在介入放射学条件下进行放射学燃烧。对于开发新的临床前放射生物学模型,其中沉积在不同组织中的剂量的确切知识至关重要,蒙特卡洛模拟的互补性和对剂量表征的实验测量结果已被证明是相当大的资产。