本文介绍了法国Villeurbanne的Laboratoire deLaMatière,法国Villeurbanne摘要:对Ni-Al合金的调查,在本文中介绍了在P型4H-SIC上形成欧姆的接触。检查了Ni/Al接触的几个比例。在1分钟内在400°C的氩气气氛中进行快速热退火,然后在2分钟内在1000°C下退火。为了提取特定的接触电阻,制造了传输线方法(TLM)测试结构。在p型层上可重复获得3×10-5Ω.cm2的特定接触电阻,而N a = 1×10 19 cm -3的掺杂,由Al 2+离子植入进行。测得的最低特异性接触电阻值为8×10-6Ω.cm2。引言硅碳化物是一种半导体,它在硅中具有多种优越的特性,例如宽带镜头三倍,高电场强度(六倍),具有铜和高电子饱和度漂移速度的高热电导率。由于SIC单晶生长晶粒已被商业化,因此在SIC应用中进行了深入的研究[1],用于高温,高频和高功率设备。半导体设备参数控制开关速度和功率耗散的强大取决于接触电阻[2]。为制造高性能的SIC设备,开发低阻力欧姆接触是关键问题之一。目前正在限制SIC设备的性能,特别是因为与P型材料接触[3-7]。这些接触通常采用铝基合金[3,7]。已经研究了许多不同的解决方案,并且非常关注Ti/al [3-5],该溶液在p -SIC上产生了10 -4-10-5Ω.cm2的特定接触电阻。最近通过使用诸如TIC [6]的替代材料(诸如TIC [6]的替代材料产生改进的接触的尝试,导致了低于1×10-5Ω.cm2的特定接触电阻,但是这些接触需要“外来”材料和非标准制造技术。另一方面,一些调查集中在接触Ni/Al [7,8]上,优势是形成欧姆行为无论构成不管构成。在本文中,通过不同的参数提出并讨论了p-SIC上Ni/Al欧姆接触的形成。用不同的参数实现了一组样品。善良的注意力首先集中在表面制备上,尤其是有或没有氧化的情况。然后,研究并讨论了触点中的特定电阻与AL含量。最后,也分析了退火序列的效果。使用标准的梯形热处理特征用于1000°C的退火,然后通过在400°C的中间步骤添加1分钟进行修改。实验样品是4H-SIC N型底物,其n型表层掺杂以10 15 cm -3的掺杂,从Cree Research购买。通过浓度为n a = 1×10 19 cm -3的Al 2+离子植入获得P型区域。在Argon Ambient下,在45分钟内在1650°C下进行射入后退火[9]。首先在溶剂中清洁样品,然后再清洗“ Piranha”溶液。冲洗后,将RCA清洁应用于样品,然后将它们浸入缓冲氧化物蚀刻(BOE)中。清洁后,立即在1150°C的干氧中生长了SIO 2层2小时。光刻来定义传输线方法(TLM)模式,并在将样品引入蒸发室之前就打开了氧化物。Ni的接触组成,然后通过电阻加热沉积AL。最终通过升降过程获得了TLM触点。仅在几分钟内在1000°C下在1000°C下在Argon大气下进行退火后才能建立欧姆接触的形成。
氮化铝(Algan)是紫外发光光子设备开发的一种材料。基于钒的金属堆栈是与N型Algan形成欧姆接触的流行方法。但是,这些金属堆栈必须退火至600°C以上的温度[6],以形成VN,在此期间,欧姆接触堆栈中的金属可以横向散布和短图案设备。这项研究的目的是确定将V/al/ni/au堆栈的横向扩散最小化的退火条件,并研究退火下的这些堆栈的行为。金属堆栈在8×8毫米硅(SI)块上图案化,并在不同的温度和时间上退火。退火条件的“安全区域”并未确定设备。通过C-TLM结构的扫描电子显微镜(SEM)图像确定扩散量。我们还观察到退火下的Ni的“弹力”可能是由于其高表面能。在以后的研究中,这种观察结果激发了将Ni切换为具有较低表面能量的金属。
我们感谢中国国家科学基金会 (NSF) 61974113 的资金支持。Ma 感谢 BI Shklovskii 的有益讨论和 Lange 对测量的帮助。
我们讨论一个特殊情况,其中开放量子系统可用作复杂系统新特性的量子探针,如热浴的温度。量子探针固有的抗退相干性是使整个方案非常敏感的关键特征。这里研究的具体设置是量子测温法,旨在利用退相干作为资源来估计样品的温度。我们专注于欧姆区(从亚欧姆到超欧姆)平衡的玻色子浴的温度估计,通过使用不同初始状态的量子比特对并与不同环境相互作用,由单个热浴或两个相同温度的独立热浴组成。我们的方案涉及探针的纯相位失调,从而避免与样品的能量交换以及随之而来的温度本身的扰动。我们讨论了探针之间的相关性的作用以及局部浴与全局浴的存在。我们表明,如果两个量子位嵌入在一个公共槽中,那么纠缠可以在短时间内改善温度测定,而如果交互时间不受限制,那么相干性而不是纠缠才是量子温度测定的关键资源。
在 GaN HEMT 的可靠性研究中,阈值电压 (V th ) 的波动对监测电漂移提出了挑战。虽然欧姆 p-GaN 等技术可以减轻 V th 波动,但可恢复电荷捕获的问题仍然存在。因此,在进行可靠性研究时采用新颖的特性分析方法至关重要,这样才能测量内在变化而不是即使在未退化的晶体管中也存在的电荷捕获效应。本文阐述的一种方法可以可靠且可重复地测量欧姆 p-GaN 栅极 HEMT GaN 的 V th 。在阈值电压测量之前立即引入专用的栅极偏置曲线以使其稳定。这个预处理阶段需要负偏置电压,然后再施加适当高的电压才能有效。所介绍的新协议也被证明适用于其他 HEMT GaN 结构。
通过使用 SmartSiC™ 基板,无欧姆退火 SiC 功率器件的功率循环可靠性已得到验证 通过使用 SmartSiC™ 基板,无欧姆退火 SiC 功率器件的功率循环可靠性已得到验证 通过使用 SmartSiC™ 基板,无欧姆退火 SiC 功率器件的功率循环可靠性已得到验证 通过使用 SmartSiC™ 基板,无欧姆退火 SiC 功率器件的功率循环可靠性已得到验证 通过使用 SmartSiC™ 基板,无欧姆退火 SiC 功率器件的功率循环可靠性已得到验证 通过使用 SmartSiC™ 基板,无欧姆退火 SiC 功率器件的功率循环可靠性已得到验证
ITS-90 规定使用 2.5 欧姆和 0.25 欧姆 SPRT 作为银点 (962°C) 高温标准。这种非常小的电阻很难测量,通常只能用电阻桥测量。超级温度计直接解决 ITS-90 问题,绝对是最具成本效益的解决方案。此外,25 欧姆 SPRT 的分辨率为 0.0001°C。可以轻松进行比较校准或针对主要标准固定点的校准。两种仪器都有两个通道,可同时处理两个探头。显示和记录实际温度,或选择直接从屏幕读取两者之间的差异。两种超级温度计都有自己的板载电阻器。每个都是高稳定性、低热系数、四端子电阻器,适用于温度计的每个电阻范围:0.25 欧姆、2.5 欧姆、10 欧姆、25 欧姆、100 欧姆和热敏电阻范围。电阻器安装在内部温控烤箱中。还有什么更好的吗?嗯,实际上确实如此。
视频 RS-170 模拟视频输入/输出 (NTSC) HD-SDI (SMPTE 292) RS-170 模拟视频输入/输出 (NTSC/PAL) RS-232 2 个用户通道、1 个 GPS 控制台 RS-422 2 个全双工用户通道 以太网 100 Base-T,第 3 层路由 接口布局 J1 电源,9 针 D 型连接器 J2 COMSEC 填充,9 针微型 D 型连接器 未使用 J3 任务数据接口(红色 I/O),51 针微型 D 型连接器 J4 管理端口和远程指示器 15 针微型 D 型连接器 J5 RF 设备接口(黑色 I/O),37 针微型 D 型连接器 J6 视频输入,SMA(50 欧姆) 视频输入,BNC(75 欧姆) J7 视频输出,SMA(50 欧姆) 视频输出,BNC(75 欧姆) J8 RSSI 1,SMA 信号移至 J5 J9 RSSI 2,SMA 信号移至 J5 J10 接收器 1,SMA(50 欧姆) J11 接收器 2,SMA(50 欧姆) J12 未使用 已移除 J13 未使用 已移除 J14 发射器 1,SMA(50 欧姆) J15 发射器 1,SMA(50 欧姆) 环境高度 30,000 英尺(9,100 米)(工作)
在精密应用的新型普通电阻和电压标准开发领域开展科学合作,开发 1 欧姆至 100 欧姆范围内低负载依赖性的电流测量电阻。至 10 kOhm,具有高时间稳定性。 开发该项目的带隙电压标准
在精密应用的新型普通电阻和电压标准开发领域开展科学合作,开发 1 欧姆至 100 欧姆范围内低负载依赖性的电流测量电阻。至 10 kOhm,具有高时间稳定性。 开发该项目的带隙电压标准