有了这些类型的标准和规范,接地电极、水管、Ufer 系统、接地环、接地棒或接地网的测试是最常见的测试之一。用于测试的适用标准是 IEEE 81 和 IEEE 81.2,其中“三点电位降”程序最常见。IEEE 81 和电位降法适用于相对较小且要求接地电阻大于 1 欧姆的系统。对于要求接地电阻小于 1 欧姆的大型电网和系统,应考虑 IEEE 81.2 标准。
接收器。使用 4 或 8 欧姆扬声器时,阻抗不匹配问题可以轻松解决。第一个解决方案是购买 600 到 8 欧姆的音频变压器。这些变压器有时可以在 Fair Radio 以大约 8 美元的价格买到。在当地的 Radio Shack 可以找到更简单的解决方案。购买 70.7 伏线路变压器(目录号 32-1031),并将标有“C”和“10”的初级端子连接到位于 R390A 背面左侧接线板上的端子 6 和 7。然后,将变压器的次级侧、端子“8”和“C”连接到您的 8 或 4 欧姆扬声器。这将导致 500 到 8 欧姆的匹配,从而提供良好的性能。通过使用 25 伏线路变压器并使用与上述相同的配置(除了选择变压器初级侧的“1”和“C”抽头),可以实现更接近的匹配。 70.7 伏线路变压器中的次级线如上所示。
石墨烯器件中的量子霍尔效应最近允许使用稳健的电阻平台( R H = R K /2 = h /2 e 2 )作为欧姆的计量实现 [1]。未来传播欧姆的途径之一是通过构建能够提供多个量化电阻值的量子霍尔阵列电阻标准 [2]– [6]。在制造此类网络之前,必须降低接触和互连处的累积电阻。在本研究中,使用四端和两端方法测量和比较了外延石墨烯器件的量化霍尔电阻 (QHR)。当应用超导多串联接触时,不希望的电阻显著降低。这些新的设备接触几何形状和成分为下一代电阻标准的设计开辟了新途径。
接地 应使用足够的接地线,以可靠地满足 EN 61340-5-1 表 3 中工作表面的小于 1 x 10 9 欧姆的要求。行业建议,连续运行的 ESD 垫应以 10 英尺的间隔接地,以允许适当的电荷衰减率。每个单独的 ESD 垫都应接地,接地扣距两端不超过五英尺。
为响应国际度量衡委员会 (CIPM) 的号召,集中研究可能重新定义的 SI 系统,REUNIAM 项目旨在为重新定义 SI 基本单位安培提供重要基础。在可能基于基本常数的新 SI 中,电单位将发挥关键作用:宏观量子效应将它们直接与基本电荷 e 的值和普朗克常数 h 联系起来。在新系统中,单位安培可以由乘积 e · f 定义,将其与 e 和频率 f 相关联。但是,用于从 e 和 h 导出单位伏特和欧姆的量子效应允许实现 V 和 Ω 比单电荷传输 (SCT) 效应允许从 e 导出安培更精确,因为关系 e · f 只能在低频下使用,这限制了这种小电流的实际使用。
CT 值的范围也有限制,因为 CT 的放电时间决定了振荡器输出脉冲的脉冲宽度。该脉冲(除其他用途外)用作两个输出的消隐脉冲,以确保在转换期间不可能同时打开两个输出。此输出死区时间关系如图 1 所示。低于 0.35 微秒的脉冲宽度可能导致内部触发器切换失败。这将 CT 的最小值限制为 1000pF。(注意:虽然振荡器输出是方便的示波器同步输入,但探头电容会增加脉冲宽度并略微降低振荡器频率。)显然,脉冲宽度的上限由所选开关频率下电源所需的调制范围决定。CT 的实际值介于 1000pF 和 0.1 µF 之间,尽管已经成功实现了 120 Hz 振荡器,其值高达 5 µF,并串联了 100 欧姆的浪涌限制电阻。
本文介绍了一种光伏 (PV) 储能系统的综合设计和控制策略。该系统由一个 2kW 光伏系统、两个转换器电路、一个 6 欧姆的电阻负载和一个集成直流总线的锂离子电池存储组成,为电阻负载提供恒定功率。该方案提供了两种转换器拓扑,一种是升压转换器,另一种是 DC/DC 双向转换器。升压转换器直接串联连接到 PV 阵列,而双向 DC/DC 转换器 (BDC) 连接到电池。升压转换器用于调节 PV 阵列的最大功率点跟踪 (MPPT)。双向控制器的闭环控制采用 Takagi-Sugeno 模糊 (TS-Fuzzy) 控制器来实现,以调节电池充电和放电功率流。所提出的方案提供了良好的直流总线电压稳定性。给出了所提出的控制方案在 MATLAB/Simulink 下的仿真结果,并与比例积分 (PI) 控制器进行了比较。在实时数字模拟器(RTDS)上验证了MATLAB获得的仿真结果。
(a)使用E +IΩT时间限制,nd频率依赖性复合电导率σ(ω)=σ1-iσ2。假设每个“ UID”对电动ELD独立响应,因此它们的贡献加起来形成了总导电率。(b)哪种简单的集总元素电路具有y = 1 /z(其中z是电路的复杂阻抗),其频率依赖性与σ(ω)相同?(c)表明,在低频极限(ω节)中,正常响应纯粹是欧姆的,而超级UID响应纯粹是感应的。在此限制中,使用经验关系:n s(t)= n 0 1 - (t/t c)4; n n n(t)= n 0 -n s(t),其中n o是材料中电子的密度。旁边:N s(t)的表达是清洁金属中超级UID密度的相当好的近似值,但是第二个表达式非常敬畏:n s(t)+ n n(t)不等于总电子密度。
摘要:一种前微型图案的渗透过程,用于制造Ti/al/ti/ti/tin ohmic接触到超薄式级别(UTB)Algan/gan异质结构,其欧姆接触电阻率明显降低了0.56ω·Mm的欧欧米触点电阻率为0.56ω·Mm,在同步型柔和的550°MM处于550°C c。板电阻随着电源定律的温度而增加,指数为+2.58,而特定的接触电阻率随温度而降低。接触机制可以通过热场射击(TFE)很好地描述。提取的Schottky屏障高度和电子浓度为0.31 eV和5.52×10 18 cm -3,这表明欧姆金属与UTB-ALGAN以及GAN缓冲液之间的亲密接触。尽管需要深入研究,但揭示了欧姆的透射长度与微图案大小之间的良好相关性。使用拟议的无AU欧姆式融合技术制造了初步的CMOS-PROCOSS-PROCESS-COMPAT-IS-INBLE-METAL-MUNS-DEMENDORATOR-极性高动力晶体管(MIS-HEMT)。
研究了五苯薄膜在氧化锡(ITO)涂层玻璃上的物理和结构特性。使用20、30和60分钟的沉积时间的热蒸发方法沉积了五苯薄膜。现场发射扫描电子显微镜(FESEM)图像显示,膜厚度随沉积时间的增加而增加,在60分钟时出现了散装相位层。通过五射线衍射(XRD)模式证明了与15.5Å晶格间距相对应的薄膜相位的存在,其沉积时间为20和30分钟。同时,在沉积时间为60分钟,晶格间距为14.5Å,在五苯甲酸膜中验证了散装相的存在。原子力显微镜(AFM)的五苯甲烷膜结晶度的图像显示,沉积在Ito涂层玻璃上的五苯甲烯膜表现出具有模块化晶粒的相似岛屿的形成,从而产生了细晶体结构。从电流 - 电压(I-V)和电流密度 - 电压(J-V)特性中,五苯甲烯薄膜是欧姆的,并且随着五苯苯乙烯的厚度的降低而增加。五苯甲烯膜在透明底物上的宽带和窄带光电设备的发展中显示出潜力。