通过在体内大规模地同时进行超突变和选择,微生物宿主中的酶和其他蛋白质的连续定向进化能够超越经典定向进化,并且只需极少的手动输入。如果目标酶的活性可以与宿主细胞的生长相结合,那么只需选择生长就可以提高活性。与所有定向进化一样,连续版本不需要事先了解目标的机制。因此,连续定向进化是修改植物或非植物酶以用于植物代谢研究和工程的有效方法。在这里,我们首先描述用于连续定向进化的酵母(酿酒酵母)OrthoRep 系统的基本特征,并将其与其他系统简要比较。然后,我们将逐步介绍使用 OrthoRep 进化主要代谢酶的三种方式,并以 THI4 噻唑合酶为例并说明获得的突变结果。最后,我们概述了 OrthoRep 的应用,这些应用满足了日益增长的需求:(i)改变植物酶的特性以便返回植物;(ii)改造(“植物化”)原核生物(尤其是外来原核生物)的酶,使其在温和的类植物条件下发挥良好作用。
摘要:外延和晶圆键合系统界面的研究借鉴了材料科学、电气工程和机械工程,涉及先进的材料表征技术。低温晶圆键合已被用来生产各种各样的材料组合,最显著的是绝缘体上硅结构。然而,对外延和键合界面的修改会影响这些界面上的电或热传输。在本演讲中,我们提供了几个半导体和金属基系统的例子,以解决研究和修改不同、技术上重要的界面组合作为处理(如退火)的功能的能力。材料组合范围从 Si|Si 和 Si|Ge 到宽带隙材料组合,包括 GaN|Si 到 b-Ga 2 O 3 | SiC 以及金属|金属热压键合。我们的主要目标是能够研究和设计界面以优化属性并最终优化设备性能。这些研究是 MURI 项目“利用新的理论范式增强宽带隙电力电子中的界面热传输”的一部分。
摘要:最近的研究表明,长期意识障碍 (PDOC) 是由关键皮质和皮质下网络的结构和功能障碍引起的,包括默认模式网络 (DMN) 和前脑中脑回路 (AFM)。然而,这种损伤的具体机制仍然未知。已知纹状体-苍白球通路的中断会导致丘脑的过度抑制和皮质缺乏兴奋,这是 PDOC 的特征。在这里,我们在 rs-fMRI 数据上使用光谱动态因果模型和参数经验贝叶斯来评估 PDOC 中的 DMN 变化是否是由 AFM 中断引起的。PDOC 患者表现出 AFM 内的整体耦合减少,具体而言,纹状体的自我抑制减少,同时纹状体与丘脑的耦合减少。这导致 AFM 对 DMN 的抑制作用消失,主要由包括楔前叶和下顶叶皮质在内的后部区域驱动。反过来,DMN 显示出楔前叶和内侧前额叶皮质的自我抑制中断。我们的结果在皮层下水平上为前部中脑回路模型提供了支持,但强调了 AFM 对 DMN 的抑制作用,而 DMN 在 PDOC 中被破坏。
摘要:电力部门和材料制造业的长期脱碳是我们这个时代最紧迫的挑战。如果不采取果断行动,到 2050 年,这些部门的碳排放量将增加一倍以上。廉价可再生电力的迅速扩张为通过电化学彻底改变传统工程流程提供了前所未有的机会,从而为我们社会面临的重大挑战提供解决方案。因此,这些部门能够减少或消除二氧化碳产生的创新将是改变我们当前气候轨迹的关键。在这次演讲中,我将讨论我之前的两次探索和应用电化学、机械工程和材料科学的基本原理来推进能源存储和材料可持续性应用的经历。首先,我将介绍用于稳定电化学电池界面金属电沉积过程的不同电解质设计方法,并在金属阳极电池中实际应用。然后,我将介绍我利用电化学介导技术的闭环材料回收平台的工作,该平台可以将废物分离成有价值的产品流,而无需额外的废物产生,仅依靠低成本的电力、水和食盐。未来,我的研究将深入探讨旨在加速向低碳和气候适应型未来转型的基本机制和先锋技术。
摘要目的。脑损伤是全球范围内导致长期残疾的主要原因,常常导致手部功能受损。脑机接口 (BMI) 为改善手部功能提供了一种潜在的方法。BMI 通常旨在替代失去的功能,但也可用于神经康复 (nrBMI),促进神经可塑性和功能恢复。本文,我们报告了一种新型 nrBMI,它能够通过独特的 TBI 后开颅手术窗口模型获取高 g (70-115 Hz) 信息,并提供与预期抓握力同步且成比例的感觉反馈。方法。我们开发了 nrBMI,以使用在脑外伤 (TBI) 患者开颅手术 (hEEG) 中记录的脑电图。nrBMI 使用户能够对施加的力进行连续、成比例的控制,并提供连续的力反馈。我们报告了初始测试组由三名 TBI 人类参与者组成,以及对照组由三名颅骨和运动功能完整的志愿者组成。主要结果。所有参与者均成功控制了 nrBMI,初始成功率很高(6 名参与者中的 2 名)或表现随着时间的推移而改善(6 名参与者中的 4 名)。我们在 hEEG 中观察到了力意图的高 g 调制,但在颅骨完整的 EEG 中没有观察到。最重要的是,我们发现高 g 控制显著改善了神经调制开始和 nrBMI 输出/触觉反馈之间的时间同步(与低频 nrBMI 控制相比)。意义。这些概念验证结果表明,高 g nrBMI 可供控制力能力受损的个体使用(无需立即诉诸 ECoG 等侵入性信号)。值得注意的是,nrBMI 包含一个参数,用于更改解码意图和意志力之间共享的控制分数,以调整恢复进度。神经调节和高 g 信号力控制之间的同步性提高可能对最大限度地发挥 nrBMI 诱导神经回路可塑性的能力至关重要。诱导可塑性对于脑损伤后的功能恢复至关重要。
台山反中微子观测站(TAO,又称JUNO-TAO)是江门地下中微子观测站(JUNO)的卫星实验。一台吨级液体闪烁体探测器将放置在距离台山核电站核心约 30 米的地方。反应堆反中微子谱将以亚百分能量分辨率进行测量,为未来的反应堆中微子实验提供参考谱,并为测试核数据库提供基准测量。一个装有 2.8 吨钆掺杂液体闪烁体的球形丙烯酸容器将通过 10 m 2 硅光电倍增管 (SiPM) 进行观察,其光子探测效率 > 50%,几乎完全覆盖。光电子产量约为每兆电子伏 4500 个,比任何现有的大型液体闪烁体探测器都要高一个数量级。该探测器在 -50 ◦ C 下运行,以将 SiPM 的暗噪声降低到可接受的水平。该探测器每天将测量约 2000 个反应堆反中微子,并设计为能够很好地屏蔽宇宙背景和环境放射性,使背景信号比约为 10%。该实验预计将于 2022 年开始运行。
摘要:量化美国对野火的生计脆弱性是一项挑战,因为需要系统地将多维变量整合到分析中。我们旨在通过制定一个框架来计算最近遭受野火侵袭最多的 14 个美国州的生计脆弱性指数 (LVI),从而衡量野火对人类及其物质和社会环境的威胁。LVI 是通过评估每个州对野火事件的贡献因素(暴露度、敏感性和适应能力)来计算的。这些贡献因素通过一组指标变量来确定,这些指标变量被分类为相应的组以生成 LVI 框架。通过执行主成分分析 (PCA) 来验证该框架,确保每个选定的指标变量都与正确的贡献因素相对应。我们的结果表明,亚利桑那州和新墨西哥州的生计脆弱性最大。相比之下,加利福尼亚州、佛罗里达州和德克萨斯州的生计脆弱性最小。虽然加州是野火风险和敏感度最高的州之一,但结果表明,与其他州相比,加州的适应能力相对较高,表明加州已采取措施抵御这些脆弱性。这些结果对于野火管理人员、政府、政策制定者和研究科学家来说至关重要,有助于确定并提供更好的弹性和适应性