在本文中,我们对生成式预训练 Transformer (GPT) 模型的基础技术进行了全面分析,特别强调了欧几里得距离、空间分类和 GPT 模型功能之间的相互关系。我们的研究首先对欧几里得距离进行彻底检查,阐明其作为量化多维空间中点之间接近度的基本指标的作用。随后,我们概述了空间分类技术,阐明了它们在辨别复杂数据结构中的模式和关系方面的效用。在此基础上,我们深入研究了 GPT 模型的内部工作原理,概述了它们的架构组件,例如自注意力机制和位置编码。然后,我们探索了训练 GPT 模型的过程,详细说明了标记化和嵌入的重要性。此外,我们还仔细研究了欧几里得距离和空间分类在使 GPT 模型能够有效处理输入序列并在各种自然语言处理任务中生成连贯输出方面的作用。最终,本文旨在全面了解欧几里得距离、空间分类和 GPT 模型之间的复杂联系,从而更深入地了解它们对人工智能和自然语言处理进步的集体影响。
摘要:K最近邻算法是应用最为广泛的分类算法之一,但其高时间复杂度限制了其在大数据时代的性能。量子K最近邻算法(QKNN)可以满意地处理上述问题,但直接应用传统的基于欧氏距离的相似性度量会牺牲其准确率。受极坐标系和量子特性的启发,本文提出一种新的相似性度量来取代欧氏距离,将其定义为极坐标距离。极坐标距离同时考虑角度和模数长度信息,引入一个根据具体应用数据调整的权重参数。为了验证极坐标距离的效率,我们使用几个典型数据集进行了各种实验。对于传统KNN算法,使用极坐标距离进行相似性度量时准确率性能相当,而对于QKNN算法,其分类准确率明显优于欧氏距离。此外,极坐标距离表现出优于欧氏距离的可扩展性和鲁棒性,为 QKNN 在实践中的大规模应用提供了机会。
摘要:脑电信号作为一种新型的生物特征被用于生物特征认证。为了解决传统分类网络难以有效拓展分类数目的问题以及提高工程实用性,本文提出一种基于注意力机制和三重态损失函数的脑电数据认证方法。该方法首先将脑电信号输入深度卷积网络,利用长短期记忆网络结合注意力机制将其映射到512维欧氏空间,得到包含身份信息的脑电信号特征向量;然后利用三重态损失函数调整网络参数,使得同类信号特征向量之间的欧氏距离减小,不同类信号之间的欧氏距离增大。最后,使用公开的脑电数据集对该识别方法进行评估。实验结果表明,该方法在保持识别率的同时,有效拓展了模型的分类数目,提高了脑电认证的实用性。
数据敏感度量自然出现在机器学习中,并且在一些著名方法中起着核心作用,例如 k-NN 图方法、流形学习、水平集方法、单链接聚类和基于欧氏 MST 的聚类(详情见第 5 节和附录 A)。构建合适的数据敏感度量是一个活跃的研究领域。我们考虑一个简单的数据敏感度量,它有一个底层流形结构,称为最近邻度量。该度量最早在 [CFM + 15] 中引入。它及其近似变体在过去已被多位研究人员研究过 [HDHI16、CFM + 15、SO05、BRS11、VB03]。在本文中,我们展示了如何精确计算任意维度的最近邻度量,这解决了任何基于流形的度量最重要和最具挑战性的问题之一。
对粒子进行离散时间量子游动演化时,由于系统噪声的影响,游动态容易出现误差。该研究提出了一种基于双格子Bose-Hubbard模型的多粒子量子游动误差修正算法。首先,根据局域欧氏生成元构造两点Bose-Hubbard模型,并证明模型中的两元素可以任意替换。其次,利用Bethe假设方法得到了模型中粒子的跃迁强度与纠缠度的关系。第三,对量子格子的位置进行编码,构造量子态交换门。最后,通过将游动器切换到量子纠缠码的格点上,进行格点上的量子游动状态替换,再次进行替换。对双格子Bose-Hubbard模型中的量子粒子的纠缠进行了数值模拟。当粒子间相互作用与粒子跃迁强度的比值接近于0时,利用该算法可以实现模型中量子粒子的纠缠操作。根据Bose-Hubbard模型的性质,粒子纠缠后可以实现量子行走纠错。本研究引入流行的restnet网络作为训练模型,使纠错电路的解码速度提升约33%。更重要的是,卷积神经网络(CNN)解码器的下限阈值由传统最小权重完美匹配(MWPM)下的0.0058提升到0.0085,实现了高容错率的量子行走稳定行进。