雷蒙德·菲斯(Raymond Firth)的原始波利尼西亚经济。pp。XII +387 +8板。(伦敦:乔治·鲁特利奇和儿子有限公司,1939年。)15s。网。Firth教授基于他对本书原始经济的研究的材料是在他1929年在太平洋英国所罗门斯集团的岛屿之一Tikopia的探险过程中收集的。对岛上居民的社会人类学的一项有价值的研究已经在很大程度上占据了他的荣誉。现在,他从另一个角度的角度转向了投资 - 声称并声称是新的,即是新的价值体系,这是确定需求满足需求的偏好的。蒂科皮亚人民,那些熟悉Firth先前的书的人会记住这几乎没有白人文明所感动的。在他们的生活方式中,它们可能被视为简单落后文化的人的一个例子。然而,当这种文化被提交考试时,可以看出,因此所谓的经济所谓的经济绝不是简单的,但相反,它具有高度复杂的特征。通过价格及其共同的衡量标准,在西方观察者的眼中,它并不容易理解。当然,这种缺席是一个事实并未通过其他原始或落后社区生活的观察者未经观察。价值和交换媒介的标准差异一直是启发性研究的主题。Firth教授是第一个研究它从功能性的原理学家的角度引起的问题,并以对一般问题的考虑来预先他的研究。现在必须清楚,可以从两个非常不同的观点来了解原始人的经济。一方面是社会学家,以及旨在满足西方需求的观察者
纠缠现象是量子物理学的显着特征,在量子信息理论的许多领域中已被识别为关键成分,包括量子密钥分布[4],超密集编码[1]和传送[2]。然而,如何构建真正的多部分纠缠状态的一般问题仍未解决。在某种程度上取得了一些进展[5] - [7],[10],[20],但是手头的任务通常被认为是一个困难的任务。常常是这种情况[15],[17],组合学对于量子信息理论很有用,而正交阵列(OAS)是构建其他有用的组合对象的基本成分[9]。最近,已经提出了许多新的构建强度K的OA,尤其是混合正交阵列(MOAS),并且已经获得了许多新的OA类[3],[16],[18],[19],[19]。正是OAS中的这些新事态发展表明,在许多新的真实多部分纠缠的状态中构建的可能性。如果每次减少对K派对的每一次减少均最大混合,则据说由n> 2政党组成的异质多部分系统的高度纠缠量子状态被认为是均匀的[6]。这些状态与混合字母的量子误差校正代码密切相关。最近,作者在[8],[11],[12],[22]中引入了量子拉丁正方形,立方体,高管和量子正交阵列。他们还证明了
随着云计算等现代计算技术的进步,数据处理和加密技术领域取得了长足的发展。在这场竞赛中,对在加密域中成功存储数据的需求日益增长,以避免共享网络中数据泄露的可能性。本文设计了一种基于量子混沌系统的语音加密算法的新方法。在所提出的方法中,语音样本的经典比特最初通过秘密偏振角以非正交量子态编码。在量子域中,编码后的语音样本根据受控非门进行位翻转操作,然后进行阿达玛变换。通过阿达玛变换实现阿达玛和标准基中量子态的完全叠加。使用改进的퐿̇푢-超混沌系统生成C-NOT门和阿达玛门的控制位。超混沌系统的秘密非正交旋转角和初始条件是确保所提算法安全性的关键。在量子域和经典域中分析了所提算法的计算复杂度,基于上述原理进行数值模拟,结果表明所提语音加密算法具有更宽的密钥空间、更高的密钥灵敏度以及对各种差分和统计密码攻击的鲁棒性。
前药或可以激活前药的成分,特定于肿瘤。生物正交化学已成为按需前药激活的一种有希望的平台,因为它包括可以在生理条件下进行的化学反应而不会干扰生物学过程。4,5这些反应的选择性,特定城市和相当快的动力学允许精确控制非毒性前药的激活。6 - 8据报道,许多生物正交反应具有很高的选择性前药激活的潜力,例如叠氮化物和三苯基芬丁基之间的Staudinger连接,9和跨环环烯(TCO)和四嗪(TZ)之间的四津连接。10,Staudinger连接主要用于连接应用,因为其动力学相对较慢(K 2〜10-3 m-1 s-1),并且少量报告揭示了其前药激活的潜力。11 - 13在低浓度下,四嗪连接以其快速点击释放反应动力学(K 2〜10 4 m-1 s-1)而闻名,许多报告表明,TZ部分的反应性,
摘要:无细胞基因表达是研究定义最小环境中生物系统的重要研究工具,并且在生物技术中具有有希望的应用。开发控制无细胞表达的DNA模板的方法对于精确调节复杂的生物学途径并与合成细胞一起使用至关重要,尤其是使用远程,非损害刺激(例如可见光)。在这里,我们已经合成了蓝色的光活化DNA部分,这些DNA部分严格调节无细胞的RNA和蛋白质合成。我们发现,这种蓝色光激活的DNA可以与我们先前产生的紫外线(UV)光激活的DNA正交表达,我们用来生成双波长的无光控制的无细胞和栅极。通过将这些正交的光激活DNA封装到合成细胞中,我们使用了两个重叠的蓝色和紫外线模式,以对逻辑门提供精确的时空控制。我们的蓝色和紫外线正交光激活的DNA将为精确控制生物学和医学中的无细胞系统打开大门。■简介基因表达的精确控制具有广泛的应用,包括生物学研究,生物技术和医学。1缺乏控制工具的基因表达的一个区域是无细胞表达(CFE),它从DNA模板中产生功能RNA/蛋白质。cfe被广泛用于生物学,生物技术和合成生物学2,3作为研究基本生物学过程的研究工具,以最小的细胞样环境。304,5使用CFE系统阐明了几种重要的生物学机制,例如DNA复制,6,7遗传密码,8和mRNA Poly-A Tails的作用,9已被阐明。已经开发了大量不同的CFE系统10-12,现代系统提供高表达产量,多功能性,可伸缩性和可访问性。基于CFE逻辑门的生物传感器已被用来生成病原体13-15和小摩尔菌的便携式检测系统。16-18 CFE还允许对SARS-COV-2进行大规模疫苗接种工作所需的快速和高产量产生mRNA疫苗。19,20在脂质双层中的CFE系统的封装也已用于形成合成细胞,21-24允许对研究生物学过程的自下而上方法,例如细胞通信25-27-27和细胞周期28,29 Interro,并在体外并通过与活细胞相互作用在药物中使用未来的应用。
随着量子信息论领域的发展,拉丁方在经典编码理论中得到应用,考虑拉丁方的量子类似物也是很自然的。量子拉丁方的概念由 B. Musto 和 J. Vicary 于 2015 年提出[12]。此后,这些对象被证明与绝对最大纠缠 (AME) 态有关系,[14] 后者在量子信息中有各种应用。[9] [16] 我们将详细讨论 Rather 等人最近取得的成果 [15],关于大小为 6 × 6 的量子正交拉丁方的存在,这个对象不存在经典等价物。[18] 一个重要的悬而未决的问题是,是否存在任何阶的量子正交拉丁方,它们在某种意义上不等同于已知的经典拉丁方。[21] 然后,我们将通过考虑计算和代数技术,开始研究大小为 3 × 3 的量子正交拉丁方的这个问题。
最近发现的反复突变的表观遗传调节基因 (ERG) 支持它们在肿瘤发生中的关键作用。我们对 33 种癌症类型的 426 个 ERG 进行了一项泛癌症分析,包括 10,845 个肿瘤和 730 个正常组织。我们发现,除了突变之外,ERG 中的拷贝数变异比之前预期的更频繁,并且与表达异常紧密相关。新的生物信息学方法整合了各种驱动预测和多组学算法的优势,以及针对所有 ERG 的正交体外筛选 (CRISPR-Cas9),揭示了在恶性肿瘤内和跨恶性肿瘤具有驱动作用的基因以及在多种癌症类型和特征中起作用的共享驱动机制。这是迄今为止最大、最全面的分析;这也是首次专门识别 ERG 驱动因素 (epidrivers) 并描述其在致癌过程中的失调和功能影响的实验。
摘要:核酸的光刻原位合成可以使极高的寡核苷酸序列密度以及复杂的表面图案和合并的空间和分子信息编码。不再限于DNA合成,该技术允许在表面上完全控制化学和笛卡尔空间组织,这表明杂交模式可用于编码,显示或加密多种化学正交水平上的信息信息。永不超过跨杂交降低了可用的序列空间,并限制了信息密度。在这里,我们引入了一个与原位-DNA合成的表面图案中的其他完全独立的信息通道。镜像DNA双链形成的生物形成性在嵌合l-/ d-dna mi-croarrays上都进行了交叉杂交,还会导致酶促正交性,例如表面上的基于核酸酶的基于核酸酶的耐核酸酶DNA签名。我们展示了如何使用嵌合L-/ D -DNA杂交来创建内容丰富的表面模式,包括QR码,高度伪造的抗性真实性水标记以及在高密度D -DNA微阵列中的隐藏信息。
扭转二维范德华磁体可以形成和控制不同的自旋纹理,如 skyrmion 或磁畴。除了旋转角度之外,还可以通过增加形成扭转范德华异质结构的磁层数量来设计不同的自旋反转过程。在这里,A 型反铁磁体 CrSBr 的原始单层和双层被视为构建块。通过将这些单元旋转 90 度,可以制造对称(单层/单层和双层/双层)和不对称(单层/双层)异质结构。磁输运特性显示出磁滞的出现,这在很大程度上取决于施加磁场的大小和方向,不仅由扭转角度决定,还由形成堆栈的层数决定。这种高可调性允许在零场下切换易失性和非易失性磁存储器,并根据需要控制在负场或正场值下突然磁反转过程的出现。根据微磁模拟的支持,基于层中发生的不同自旋切换过程合理化了现象学。结果强调了扭转角和层数的组合是设计扭转磁体中自旋切换反转的关键要素,这对于自旋电子器件的小型化和实现新型自旋纹理很有意义。
摘要:光量子存储器的存储和检索效率 (SRE) 和寿命是扩大量子信息处理规模的两个关键性能指标。在这里,我们通过实验演示了用于冷原子集合中的两种极化的腔增强长寿命光学存储器。利用电磁感应透明 (EIT) 动力学,我们分别演示了左圆和右圆偏振信号光脉冲在原子中的存储。通过使信号和控制光束共线穿过原子并将信号光的两种偏振存储为两个磁场不敏感的自旋波,我们实现了长寿命 (3.5 毫秒) 的存储器。通过在冷原子周围放置一个低精度光学环腔,信号光和原子之间的耦合得到增强,从而导致 SRE 增加。所提出的腔增强存储表明 SRE 约为 30%,对应于固有 SRE 约为 45%。