摘要:为降低脑机接口(BCI)的准确率差异,提出了一种新的运动想象(MI)分类白化技术。该方法旨在提高脑电图特征脸分析对 BCI 的 MI 分类的性能。在 BCI 分类中,为了获得优异的分类结果,受试者之间的准确率差异对准确率本身很敏感。因此,借助 Gram-Schmidt 正交化,我们提出了一种 BCI 通道白化(BCICW)方案来最小化受试者之间的差异。新提出的 BCICW 方法改善了真实数据中 MI 分类的方差。为了验证和检验所提出的方案,我们使用 MATLAB 仿真工具对 BCI 竞赛 3 数据集 IIIa(D3D3a)和 BCI 竞赛 4 数据集 IIa(D4D2a)进行了实验。对于 D3D3a,使用基于 Gram–Schmidt 正交化的 BCICW 方法时,方差数据 (11.21) 远低于使用 EFA 方法 (58.33) 时,对于 D4D2a,方差数据从 (17.48) 降至 (9.38)。因此,所提出的方法可有效用于 BCI 应用的 MI 分类。
数字波形 33 幅移键控 (ASK) 33 频移键控 (FSK) 34 连续相频移键控 (CPFSK) 35 双频移键控 (DFSK) 35 恒定包络 4 级频率调制 (C4FM) 36 最小频移键控 (MSK) 37 驯服频率调制 (TFM) 38 高斯最小频移键控 (GMSK) 38 多频移键控 (MFSK) 38 相移键控 (PSK) 40 二进制相移键控 (BPSK) 40 正交相移键控 (QPSK) 42 偏移正交相移键控 (OQPSK) 44 交错正交相移键控 (SQPSK) 44 兼容差分偏移正交相移键控 (CQPSK) 44 相干相移键控 (CPSK) 45 差分相干相移键控 (DCPSK) 45 8PSK 调制 45 差分相移键控 (DPSK) 46 差分二进制相移键控 (DBPSK) 46 差分正交相移键控 (DQPSK) 46 差分 8 相移键控 (D8PSK) 46 正交幅度调制 (QAM) 47 正交频分复用 (OFDM) 49 扩频 (SS) 51 直接序列扩频 (DSSS) 51 跳频扩频 (FHSS) 52 增量频率键控 (IFK) 52 模拟脉冲调制 53
数字波形 33 幅移键控 (ASK) 33 频移键控 (FSK) 34 连续相频移键控 (CPFSK) 35 双频移键控 (DFSK) 35 恒定包络 4 级频率调制 (C4FM) 36 最小频移键控 (MSK) 37 适配频率调制 (TFM) 38 高斯最小频移键控 (GMSK) 38 多频移键控 (MFSK) 38 相移键控 (PSK) 40 二进制相移键控 (BPSK) 40 正交相移键控 (QPSK) 42 偏移正交相移键控 (OQPSK) 44 交错正交相移键控 (SQPSK) 44 兼容差分偏移正交相移键控 (CQPSK) 44 相干相移键控(CPSK) 45 差分相干相移键控 (DCPSK) 45 8PSK 调制 45 差分相移键控 (DPSK) 46 差分二进制相移键控 (DBPSK) 46 差分正交相移键控 (DQPSK) 46 差分 8 相移键控 (D8PSK) 46 正交幅度调制 (QAM) 47 正交频分复用 (OFDM) 49 扩频 (SS) 51 直接序列扩频 (DSSS) 51 跳频扩频 (FHSS) 52 增量频率键控 (IFK) 52 模拟脉冲调制 53
数字波形 33 幅移键控 (ASK) 33 频移键控 (FSK) 34 连续相频移键控 (CPFSK) 35 双频移键控 (DFSK) 35 恒定包络 4 级频率调制 (C4FM) 36 最小频移键控 (MSK) 37 适配频率调制 (TFM) 38 高斯最小频移键控 (GMSK) 38 多频移键控 (MFSK) 38 相移键控 (PSK) 40 二进制相移键控 (BPSK) 40 正交相移键控 (QPSK) 42 偏移正交相移键控 (OQPSK) 44 交错正交相移键控 (SQPSK) 44 兼容差分偏移正交相移键控 (CQPSK) 44 相干相移键控(CPSK) 45 差分相干相移键控 (DCPSK) 45 8PSK 调制 45 差分相移键控 (DPSK) 46 差分二进制相移键控 (DBPSK) 46 差分正交相移键控 (DQPSK) 46 差分 8 相移键控 (D8PSK) 46 正交幅度调制 (QAM) 47 正交频分复用 (OFDM) 49 扩频 (SS) 51 直接序列扩频 (DSSS) 51 跳频扩频 (FHSS) 52 增量频率键控 (IFK) 52 模拟脉冲调制 53
数字波形 33 幅移键控 (ASK) 33 频移键控 (FSK) 34 连续相频移键控 (CPFSK) 35 双频移键控 (DFSK) 35 恒定包络 4 级频率调制 (C4FM) 36 最小频移键控 (MSK) 37 适配频率调制 (TFM) 38 高斯最小频移键控 (GMSK) 38 多频移键控 (MFSK) 38 相移键控 (PSK) 40 二进制相移键控 (BPSK) 40 正交相移键控 (QPSK) 42 偏移正交相移键控 (OQPSK) 44 交错正交相移键控 (SQPSK) 44 兼容差分偏移正交相移键控 (CQPSK) 44 相干相移键控(CPSK) 45 差分相干相移键控 (DCPSK) 45 8PSK 调制 45 差分相移键控 (DPSK) 46 差分二进制相移键控 (DBPSK) 46 差分正交相移键控 (DQPSK) 46 差分 8 相移键控 (D8PSK) 46 正交幅度调制 (QAM) 47 正交频分复用 (OFDM) 49 扩频 (SS) 51 直接序列扩频 (DSSS) 51 跳频扩频 (FHSS) 52 增量频率键控 (IFK) 52 模拟脉冲调制 53
数字波形 33 幅移键控 (ASK) 33 频移键控 (FSK) 34 连续相频移键控 (CPFSK) 35 双频移键控 (DFSK) 35 恒定包络 4 级频率调制 (C4FM) 36 最小频移键控 (MSK) 37 适配频率调制 (TFM) 38 高斯最小频移键控 (GMSK) 38 多频移键控 (MFSK) 38 相移键控 (PSK) 40 二进制相移键控 (BPSK) 40 正交相移键控 (QPSK) 42 偏移正交相移键控 (OQPSK) 44 交错正交相移键控 (SQPSK) 44 兼容差分偏移正交相移键控 (CQPSK) 44 相干相移键控(CPSK) 45 差分相干相移键控 (DCPSK) 45 8PSK 调制 45 差分相移键控 (DPSK) 46 差分二进制相移键控 (DBPSK) 46 差分正交相移键控 (DQPSK) 46 差分 8 相移键控 (D8PSK) 46 正交幅度调制 (QAM) 47 正交频分复用 (OFDM) 49 扩频 (SS) 51 直接序列扩频 (DSSS) 51 跳频扩频 (FHSS) 52 增量频率键控 (IFK) 52 模拟脉冲调制 53
正在进行的研究探索了新的腈基官能化分子,例如疏螺旋体素 5 和具有腈基的二氢喹海松酸衍生物。6 氘在延长药物在体内的半衰期方面起着至关重要的作用,从而改善了暴露情况并减少了有毒代谢物,从而提高了疗效和安全性。7,8 例如 FDA 批准的第一个氘代药物,2017 年的氘代丁苯那嗪,9 和 2022 年的德克拉伐替尼。10 炔烃通常存在于药物分子中,可促进良好的相容性,11 例如依法韦仑、炔诺孕酮、炔雌醇等。随着这些药物的蓬勃发展,全面了解它们的生物和生理机制对于制定个性化的治疗方法至关重要。药代动力学研究旨在监测体内的药物浓度,反映药物在整个暴露过程中身体与药物的相互作用,包括药物的吸附、分布、代谢和消除/
基于蛋白质的疗法可以激活适应性免疫系统,导致中和抗体的产生以及细胞毒性 T 细胞介导的治疗细胞清除。本文表明,连续使用 CRISPR 相关蛋白 9 (Cas9) 和腺相关病毒 (AAV) 的免疫正交直系同源物可以避开适应性免疫反应,并能够通过重复给药实现有效的基因编辑。我们比较了 284 种 DNA 靶向和 84 种 RNA 靶向 CRISPR 效应物以及 167 种 AAV VP1 衣壳蛋白直系同源物与 I 类和 II 类主要组织相容性复合体蛋白的总序列相似性和预测结合强度。我们预测 79% 的 DNA 靶向 Cas 直系同源物不会产生交叉反应性免疫反应,我们在小鼠中对三种 Cas9 直系同源物进行了验证,但预计 AAV 血清型之间存在广泛的免疫交叉反应。我们还表明,在体内有效
施密特分解:假设 | ۧ 𝜓 𝐴𝐵 是复合系统 AB 的纯态。则系统 A 存在正交态 | ۧ 𝑖 𝐴,系统 B 存在正交态 | ۧ 𝑖 𝐵,使得
本调查提供了基于多项式理论的一系列技术的阐述,共同称为多项式方法,这些方法最近已应用于成功解决统计推断中的几个具有挑战性的问题。主题包括多项式近似,多项式插值和多数化,力矩空间和正值多项式,正交多项式和高siAN正交正交正交正交,其主要概率和统计应用在大型域和学习混合模型上的性质估计中。这些技术不仅为具有可证明最佳性的高度实用算法的设计提供了有用的工具,而且还用于通过瞬间匹配的方法来建立推理问题的基本限制。在诸如熵和支撑大小估计,不同的元素问题和学习高斯混合模型等具体问题中证明了多名方法的效果。