完整作者列表:Arkenberg, Matthew;普渡大学,生物医学工程 Nguyen, Han;普渡大学,生物医学工程 Lin, Chien-Chi;普渡大学,生物医学工程;印第安纳大学普渡大学印第安纳波利斯分校,生物医学工程
在本文中,我们广泛研究了将纠缠广播为状态相关与状态独立克隆器的问题。我们首先重新概念化状态相关量子克隆机 (SD-QCM) 的概念,在此过程中,我们引入了不同类型的 SD-QCM,即正交和非正交克隆器。我们推导出这些克隆器的保真度将变得独立于输入状态的条件。我们注意到,这种构造允许我们以拥有输入状态的部分信息为代价来最大化克隆保真度。在关于纠缠广播的讨论中,我们以一般的两量子比特状态作为资源开始,然后我们考虑贝尔对角态的一个具体例子。我们在输入资源状态上局部和非局部地应用状态相关和状态独立克隆器(正交和非正交),并根据输入状态参数获得纠缠广播的范围。我们的研究结果突出了状态依赖型克隆器在广播纠缠方面优于状态独立型克隆器的几个例子。我们的研究提供了一个比较视角,即在两个量子比特场景中通过克隆广播纠缠,即当我们对资源集合有所了解时,以及当我们没有此类信息时。
摘要:尽管档案数字存储行业已接近其物理极限,但需求却在大幅增长,因此出现了替代产品。最近的努力已经证明了 DNA 作为数字存储介质的巨大潜力,具有卓越的信息耐久性、容量和能耗。然而,大多数提出的系统都需要按需从头 DNA 合成技术,这些技术会产生大量有毒废物,因此不具备工业可扩展性和环保性。受半导体存储设备架构和基因编辑最新发展的启发,我们创建了一种称为“DNA 突变覆盖存储”(DMOS)的分子数字数据存储系统,该系统通过利用组合、可寻址、正交和独立的体外 CRISPR 碱基编辑反应来存储信息,将数据写入绿色合成 DNA 磁带的空白池中。作为概念验证,我们在 DNA 磁带上写下了我们学校徽标的位图表示和本研究的标题,并准确地恢复了存储的数据。
具有机电耦合作用的材料对于换能器和声学设备而言至关重要,因为它们是机能和电能之间的可逆转换器 1–6。高机电响应通常存在于结构不稳定性较强的材料中,传统上通过两种策略实现 - 准同型相边界 7 和纳米级结构异质性 8 。在这里,我们展示了一种不同的策略,通过从竞争的反铁电和铁电序中诱导极端的结构不稳定性来实现超高的机电响应。在相图和理论计算的指导下,我们设计了铌酸钠薄膜中反铁电正交和铁电菱面体相的共存。由于电场诱导的反铁电-铁电相变,这些薄膜显示出高于 5,000 pm V −1 的有效压电系数。我们的研究结果为设计和开发用于机电设备的反铁电材料提供了一种通用方法。
摘要 — 我们在此介绍我们在原子模型求解器 ATOMOS 中实现的先进 DFT-NEGF 技术,以探索新型材料和器件(特别是范德华异质结晶体管)中的传输。我们描述了使用平面波 DFT、随后进行 Wannierization 步骤和原子轨道 DFT 的线性组合的方法,分别导致正交和非正交 NEGF 模型。然后,我们详细描述了我们的非正交 NEGF 实现,包括非正交框架内的 Sancho-Rubio 和电子-声子散射。我们还介绍了从第一原理中提取电子-声子耦合并将其纳入传输模拟的方法。最后,我们将我们的方法应用于新型 2D 材料和器件的探索。这包括2D材料选择和动态掺杂FET,以实现最终的小型化MOSFET,vdW TFET的探索,特别是可以实现高导通电流水平的HfS 2 /WSe 2 TFET,以及通过金属半导体WTe 2 /WS 2 VDW结型晶体管的肖特基势垒高度和传输的研究。
摘要 近年来,流体天线系统 (FAS) 作为 6G 无线网络的潜在竞争者而备受关注。流体天线多址 (FAMA) 是一种新技术,它允许每个用户通过单 RF 链端口流体天线不断移动到信号干扰比 (SIR) 最强的位置。FAMA 的研究工作主要集中于从多个方面提出与增强 FAMA 相关的模型和解决方案,包括 FAS 系统、增强正交和非正交多址、信道建模、分集增益、人工智能 (AI) 技术、FAMA 与其他 6G 新兴技术如智能反射面 (IRS)、多输入多输出 (MIMO)、太赫兹 (THz) 通信等。目前尚无涵盖 FAMA 所有这些重要方面的调查。基于几个关注点,本研究提出了 FAMA 的综合分类。首先,讨论 FAS 系统。然后,介绍 FAMA 机制及其信道建模和分集增益。随后,我们将 FAMA 与 IRS、MIMO、THz 通信等其他新兴技术相结合,并提供了增强 FAMA 的 AI 方法。最后,我们介绍了各个领域进一步研究的潜在研究方向。在设计和增强 FAS 系统、通过 FAMA 促进通信以及将其与 6G 的其他尖端技术相结合时,本文可以作为参考或指导。
交替磁性影响电子态,从而允许非相对论自旋分裂的存在。由于交替磁性自旋分裂存在于 3D 布里渊区的特定 k 路径上,我们预计交替磁性表面态将存在于特定的表面取向上。我们揭示了交替磁性表面态的性质,考虑了三个代表性空间群:四方、正交和六方。我们计算了 3D 布里渊区的 2D 投影布里渊区。我们研究了表面及其各自的 2D 布里渊区,确定了具有相反符号的自旋分裂合并消除了交替磁性的位置以及哪些表面上保留了交替磁性。观察三个主要表面取向,我们发现在几种情况下,两个表面对交替磁性视而不见,而交替磁性在一个表面取向上仍然存在。哪个表面保留了交替磁性还取决于磁序。我们定性地表明,与盲表面正交的电场可以激活交替磁性。我们的结果预测了哪些表面需要分裂以保留表面或界面中的交替磁性,这为通过自旋分辨的 ARPES 观察薄膜中的非相对论交替磁性自旋分裂以及将交替磁性与其他集体模式对接铺平了道路。我们为研究交替磁性对平凡和拓扑表面状态的影响开辟了未来的前景。
代数方式:克利福德、海森堡和狄拉克对量子基础的遗产。BJ Hiley。2024 年 3 月 1 日摘要。罗杰·彭罗斯两周前的演讲得出结论,广义相对论(等效原理)和量子力学(叠加原理)的基本原理之间的冲突导致了两个现实,一个是经典的,一个是量子的。该论点基于薛定谔图景。在这次演讲中,我着手表明,如果使用海森堡图景,那么只有一个现实。论证从海森堡群结构开始,该结构具有经典和量子域的基本正交和辛对称性。克利福德认识到群在古典物理学中的作用,它在产生众所周知的正交泡利、狄拉克和彭罗斯扭子代数方面起着根本性的作用。辛对称性隐藏在冯·诺依曼的一篇被忽视的论文中,而冯·诺依曼实际上发现了 Moyal 星积代数。冯·诺依曼的论文导致了 Stone-von Neumann 定理,该定理表明,各种图像、薛定谔、海森堡、相互作用等在幺正变换下是等价的。我将展示 Bohm 版本的非相对论薛定谔方程是如何从星积代数中产生的。该乘积必然会引入一种新的能量质量,即“量子势能”,DeWitt (1952) 表明其几何起源与标量曲率张量有关。该结构揭示了共形重标度出现背后的原因,希望能够更好地理解静止质量问题。
摘要:活细胞具有高度复杂的微环境,而众多酶驱动的过程同时活跃。这些程序尚未在体外建立相当的控制,尽管尚未建立可比的对照,但这些程序是非常准确和高效的。在这里,我们设计了一个酶促反应网络(ERN),该酶反应网络(ERN)结合了拮抗和正交酶网络,以产生ATP燃料的瞬态共凝聚的可调节动力学。使用辣根过氧化物酶(HRP) - 介导的生物催化原子转移自由基聚合(BioATRP),我们合成了聚(二甲基氨基甲基丙烯酸酯)(PDMAEMA)(pDMAEMA),随后与ATP形成了Coacervates。我们使用正交和拮抗酶对合理探索了对凝聚和溶解的酶促控制,即碱性磷酸酶,碱性磷酸酶,肌酸磷酸激酶,己糖激酶,葡萄糖氧化酶和尿布。ATP燃料的凝聚力还证明了酶促催化,以证明其被用作细胞微反应器的潜力。此外,我们开发了生物催化聚合诱导的凝聚(传记),改善了反应产量并产生具有不同特征的凝聚力。此方法允许通过生物ATRP控制的聚合化而进行原位和实时编程。该策略通过弥合合成系统和生物系统之间的差距,为细胞隔室化提供了尖端的仿生应用和洞察力。暂时编程的一起坐诊的发展可能会导致多元素级联的空间布置,并提供有关用细胞器的人造细胞结构的新思想
1 范围 本报告履行了 iMERA Plus 项目新工业计量技术 (NIMTech) 的交付成果 D3.7 - 多传感器网络验证实验评估报告。本报告描述了基于 NIMTech 交付成果报告 D3.1(1) 中描述的多传感器网络方法的激光跟踪器对准误差校准程序的验证。2 简介 NIMTech 交付成果报告 D3.1(1) [1] 描述了使用多传感器网络测量方法校准激光跟踪器对准误差的实验程序。在本报告中,我们介绍了该程序的实验验证,从而验证了多传感器网络方法。激光跟踪器校准的网络方法涉及使用激光跟踪器测量多个固定点的坐标。从几个不同的位置测量相同的点。然后通过使用最小二乘参数估计法拟合描述实验设置(跟踪器位置和方向、目标位置)和激光跟踪器误差的数学模型来处理这些测量的结果。为了验证这种方法,使用网络方法获得的校正参数根据 ASME B89.4.19 标准验证了 API T3 激光跟踪器的性能,并将这些结果与使用制造商的校准数据执行的类似 ASME B89.4.19 测试进行了比较。描述用于这项工作的激光跟踪器对准误差的模型 [2] 是从之前描述的 1,3 改编为更通用的形式。第 3 节简要介绍了新模型。第 4 节包含从网络测试获得的结果,第 5 节简要描述了 ASME B89 测试和获得的结果。3 激光跟踪器误差模型 3.1 激光跟踪器错位 理想的激光跟踪器(基于“经纬仪式”设计,干涉仪位于万向架上)可以通过图 1(左)中的设置示意性表示。竖轴和经轴正交且共面,激光束在中心点与两个轴相交并向外辐射,没有角度偏移。此外,仰角和方位角编码器完美地居中并垂直于经轴和竖轴,没有失真或比例误差。实际上,由于制造公差,所有激光跟踪器都可能出现错位和偏移以及其他机械缺陷。因此,更现实的几何形状类似于图 1(右)中所示的几何形状。基准轴、经线轴和激光束轴不再正交和相交;两个角度编码器都有刻度误差和失真;激光束不从轴的交点辐射,并且具有角度偏移,因此它不再垂直于经线轴。这些机械缺陷会导致范围和角度读数中的系统误差,如果不加以纠正,将导致测量误差。在实践中,激光跟踪器控制器对原始传感器数据进行软件校正,为用户提供准确的测量数据。该校正基于误差源模型和存储在控制器中的模型参数测量结果。本实验中测试的校准程序的目的是确定模型的参数及其相关的不确定性。