[1] Fetsje Bijma、Jan C. de Munck 和 Rob M. Heethaar。“时空 MEG 协方差矩阵建模为 Kronecker 积之和”。在:NeuroImage 27.2(2005 年 8 月),第 402-415 页。[2] Kristjan Greenewald 和 Alfred O. Hero。“通过 Kronecker 积展开进行正则化块 Toeplitz 协方差矩阵估计”。在:2014 年 IEEE 统计信号处理 (SSP) 研讨会。ISSN:2373-0803。2014 年 6 月,第 9-12 页。[3] Jan Sosulski 和 Michael Tangermann。“引入块 Toeplitz 协方差矩阵以重新掌握事件相关电位脑机接口的线性判别分析”。收录于:arXiv:2202.02001 [cs, q‑bio] (2022 年 2 月)。arXiv:2202.02001。[4] Arne Van Den Kerchove 等人。“使用正则化时空 LCMV 波束形成对事件相关电位进行分类”。en。收录于:Applied Sciences 12.6 (2022 年 1 月),第 2918 页。
虽然神经网络架构的进步已导致语义分割任务最近取得了重大进展,但获取大量标记分割掩码的挑战限制了它在医学图像分析等实际应用中的广泛使用。这导致了一系列专注于半监督分割的新兴工作,其中可以使用大量未标记数据和少量标记数据来训练分割模型。半监督分类的最新研究表明,当有效使用一致性正则化等简单技术时,性能提升可能非常显著。在这项工作中,我们探索了一致性正则化在半监督分割中的有效使用,并表明当我们将一致性损失与选择信息标记图像的鉴别器结合使用时,生成的模型在多个标准基准上的表现明显优于之前的半监督语义分割工作。我们的实现代码可在 https://github.com/samottaghi/brain-segmentation 上找到。
(3)深层生成模型求解随机过程:研究求解随机模型(例如扩散模型)(例如扩散模型)(例如,扩散模型)中随机过程的随机微分方程(SDE)或部分微分方程(PDE)(PDE)(PDES)。模型)在培训期间(5)生成模型中的隐式偏见和正则化:探索生成模型中存在的隐式偏见及其对概括的影响。研究显式和隐式正则化技术的有效性(6)生成模型的鲁棒性和泛化边界:分析生成模型的鲁棒性界限及其在分布分布的场景下(7)潜在的空间几何形状(7)潜在的空间几何学和流形学习:分析与生成模型的潜在空间和与生成数据分配的分析及其关系分配的相关性。探索如何平衡潜在空间中的多样性和发电质量,并研究复杂数据情景中不同流形学习技术的有效性和局限性
)和基于性能;在规定规范之后,可以进一步扩展参与。选定的候选人无权要求在Jhansi的RLBCAU中索取正则化或吸收。研究所主管权威的决定将是最终的,并且在各个方面具有约束力。主管当局还应保留如上所述终止工作合同的权利,甚至在
Arasteh, H.、Kia, M.、Vahidinasab, V.、Shafie-khah, M. 和 Catalão, JPS, (2020)。使用随机正则化正态约束的可再生能源主导电力系统的多目标发电和输电扩展规划。国际电力与能源系统杂志 121。https://doi.org/10.1016/j.ijepes.2020.106098
深度生成模型有两种类型:显式和隐式。前者定义了一种显式密度形式,允许似然推断;而后者则针对从随机噪声到生成样本的灵活转换。虽然这两类生成模型在许多应用中都表现出强大的能力,但单独使用时,它们都有各自的局限性和缺点。为了充分利用这两种模型并实现相互补偿,我们提出了一种新颖的联合训练框架,该框架通过 Stein 差异连接显式(非规范化)密度估计器和隐式样本生成器。我们表明,我们的方法 1) 通过核 Sobolev 范数惩罚和 Moreau-Yosida 正则化引入了新颖的相互正则化,2) 稳定了训练动态。从经验上讲,我们证明,与训练单个对应方相比,所提出的方法可以促进密度估计器更准确地识别数据模式并引导生成器输出更高质量的样本。当训练样本受到污染或有限时,新方法也显示出有希望的结果。
●分类特征的本机处理:该模型本质地了解和过程分类数据,而无需手动一式壁炉编码或其他预处理技术。这简化了数据管道,并保留了分类变量内的关系。●使用时间数据的稳健性能:该模型有效地捕获了时间序列数据的模式和趋势,使其适合涉及预测,异常检测或序列分析的应用。●高心电图特征的有效处理:模型可以管理具有大量唯一值(高基数)的功能,而计算复杂性或内存需求的显着增加。●内置的缺少值处理:模型可以优雅地容纳缺失的数据而无需插入或删除,从而确保由于数据集不完整而不会丢失有价值的信息。●高级正则化技术以防止过度拟合:该模型结合了L1和L2正则化,辍学或早期停止以控制模型复杂性并防止过度拟合的技术,从而改善了对看不见数据的概括性能。
谱聚类是聚类无向图的一种常用方法,但将其扩展到有向图(有向图)则更具挑战性。一种典型的解决方法是简单地对称化有向图的邻接矩阵,但这可能会导致丢弃边方向性所携带的有价值信息。在本文中,我们提出了一个广义的谱聚类框架,可以处理有向图和无向图。我们的方法基于一个新泛函的谱松弛,我们将其引入为图函数的广义狄利克雷能量,关于图边上的任意正则化测度。我们还提出了一种由图上自然随机游走的迭代幂构建的正则化测度的实用参数化。我们提出了理论论据来解释我们的框架在非平衡类别的挑战性设置中的效率。使用从真实数据集构建的有向 K-NN 图进行的实验表明,我们的图分区方法在所有情况下均表现良好,并且在大多数情况下优于现有方法。
仅几个月)和基于性能;在规定规范之后,可以进一步扩展参与。选定的候选人无权要求在Jhansi的RLBCAU中索取正则化或吸收。•学院主管权威的决定将是最终的,并且在各个方面具有约束力。•主管当局还应保留终止上述工作合同的权利,甚至
[8] Andrew Childs、Tongyang Li、Jin-Peng Liu、Chunhao Wang、Ruizhe Zhang。用于对数凹分布采样和估计正则化常数的量子算法。第 36 届神经信息处理系统会议 (NeurIPS) 论文集,2022 年。第 26 届量子信息处理年会 (QIP),2023 年。(特邀演讲)