摘要目的:提出一种使用深度学习框架直接从正弦图中检测和分类颅内出血 (ICH) 的自动化方法。该方法旨在通过消除耗时的重建步骤并最大限度地减少计算机断层扫描 (CT) 重建过程中可能出现的潜在噪音和伪影来克服传统诊断的局限性。方法:本研究提出了一种使用深度学习框架从正弦图中检测和分类 ICH 的两阶段自动化方法。该框架的第一阶段是强度变换正弦图合成器,它合成与强度变换 CT 图像等效的正弦图。第二阶段包括级联卷积神经网络-循环神经网络 (CNN-RNN) 模型,该模型可从合成的正弦图中检测和分类出血。 CNN 模块从每个输入的正弦图中提取高级特征,而 RNN 模块提供正弦图中邻域区域的空间相关性。在一个包含 8652 例患者的大型样本的公开 RSNA 数据集上对所提出的方法进行了评估。结果:结果表明,与 ResNext-101、Inception-v3 和 Vision Transformer 等最新方法相比,所提出的方法在患者准确率上显着提高了 27%。此外,与基于 CT 图像的方法相比,基于正弦图的方法对噪声和偏移误差的鲁棒性更高。还对所提出的模型进行了多标签分类分析,以从给定的正弦图中确定出血类型。还使用激活图检查了所提出模型的学习模式的可解释性。结论:所提出的基于正弦图的方法可以准确、高效地诊断 ICH,无需耗时的重建步骤,并有可能克服基于 CT 图像的方法的局限性。结果显示,使用基于正弦图的方法检测出血的效果良好,进一步的研究可以探索该方法在临床环境中的潜力。
引言尽管原位肝移植(OLT)是终末期肝脏疾病和某些肝脏恶性肿瘤患者的首选治疗方法,但供体器官短缺仍然是全球健康问题。尽管使用了来自已故供体的次优或“边缘”肝脏的使用,包括老年人死亡后的捐赠,以及肝脂肪变性大于30%,但由于质量较差而丢弃了20%以上的肝脏移植物(1)。此外,边缘肝移植物特别容易受到缺血/再灌注损伤(IRI),这是一种先天免疫驱动的局部炎症反应,这会构成移植物和患者的生存,并使OLT结局恶化(1,2)。因此,除了手术技术,免疫抑制药物方案以及重症监护援助外,供体器官保存对于改善临床结果和扩大可用于救生的供体器官池至关重要。尽管肝脏保存技术最近进行了改进,包括低温氧化灌注,过冷保存和正常热机灌注(NMP)(3-6)(3-6),静态冷藏(SCS)仍然是金标准,因为其简单性和成本效益(7)。实际上,在早期临床试验中,NMP和SCS肝脏保存之间的非抗恒骨胆道狭窄和移植物/患者存活的发生率没有显着差异(6),NMP可以增加90,000美元的$ 90,000,以增加单个OLT程序(8,9)。然而,由于有必要减少冷应力造成的细胞损伤(2、7),因此有必要采用新的减少冷保留型肝细胞损伤的方法。冷器官保存过程中肝窦内皮细胞(LSEC)的损伤代表导致肝IRI的INICAIL关键因素,确定移植物微循环不良,血小板激活,持久性
摘要这项研究提出了一种新型的杂交元神经算法,正弦辅助教学学习学习的优化(SCATLBO),旨在训练用于单声道和多模式医学图像注册的喂养前进神经网络(FNNS)。scatlbo结合了正弦骨算法(SCA)的优势,用于探索基于教学学习的优化(TLBO),以实现剥削,达到了平衡,从而增强了算法能力,以避免局部最小值并提高逆转率。医学图像注册,对于准确的医学分析必不可少的,从这种混合方法中受益,因为它有效地对齐了复杂的多模式图像。在这项工作中,SCATLBO用于训练来自癌症基因组乳房侵入性癌(TCGA-BRCA)数据集的乳房MRI图像。SCATLBO的性能是针对几种众所周知的元启发式算法的基准测试,包括TLBO,粒子群优化(PSO),蚂蚁菌落优化(ACO),灰狼优化器(GWO)和进化策略(ES),以及基于平均平方误差(MSE)的评估(MIS)和杂音的评估(MI)。实验结果表明,SCATLBO在准确性,收敛速度和稳健性方面优于其他技术,将其确立为基于神经网络的图像注册任务的有前途的工具。这项工作有助于提高FNN的元启发式培训方法,并在各种医学成像领域中使用了潜在的应用。
图S1。 通过正弦脉冲类似阳极氧化的NaA – GIF制造。 a)代表性的全输入正弦电流密度曲线(黑色实线)和代表性的全输出正弦电压曲线(红色实线)。 初始部分中电压曲线向更高的电压值的轻微偏差与纳米孔的不均匀生长有关,从光滑的表面开始。 b) Magnified view (down left in blue dash line) of one period at the beginning of the electrochemical process with graphical definition of input anodization parameters: J max – current density amplitude, J average – current density average, T – anodization period and the output parameters in voltage profile: V average – average voltage during the anodization process, V max – output voltage amplitude. 当输入阳极氧化电流发生变化时,由于电流恢复过程缓慢而导致的输入电流密度曲线和电压轮廓之间存在时间延迟; c)放大了代表性输入和输出正弦电流密度和电压曲线(在黄色仪表线中向下),其图形定义是在制造电化学过程结束时参数的图形定义。图S1。通过正弦脉冲类似阳极氧化的NaA – GIF制造。a)代表性的全输入正弦电流密度曲线(黑色实线)和代表性的全输出正弦电压曲线(红色实线)。初始部分中电压曲线向更高的电压值的轻微偏差与纳米孔的不均匀生长有关,从光滑的表面开始。b) Magnified view (down left in blue dash line) of one period at the beginning of the electrochemical process with graphical definition of input anodization parameters: J max – current density amplitude, J average – current density average, T – anodization period and the output parameters in voltage profile: V average – average voltage during the anodization process, V max – output voltage amplitude.当输入阳极氧化电流发生变化时,由于电流恢复过程缓慢而导致的输入电流密度曲线和电压轮廓之间存在时间延迟; c)放大了代表性输入和输出正弦电流密度和电压曲线(在黄色仪表线中向下),其图形定义是在制造电化学过程结束时参数的图形定义。
摘要——如今,惯性测量单元已广泛应用于多种应用,例如汽车和自动驾驶汽车、无人驾驶飞行器、手机、机器人、人工智能等。尽管如此,最近的文献并没有正确涵盖微电子设备在真实环境条件下运行时的动态计量性能表征和可靠性分析。为了填补这一空白,本文提出了在振动条件下表征惯性测量单元的方法,即通过步进测试振动曲线来测试在不同频率下受到正弦振动的惯性平台的行为。从广为人知的正弦扫描振动曲线开始,制定了一个定制的测试计划,该计划基于正弦刺激随时间的频率递增,以研究惯性平台的频率响应。对一组真实设备的应用证实,所提出的测试可以识别机械应力对频域内微机电传感器计量性能的影响。所开发的测试计划还可用于调查特定频率的正弦振动是否会触发一些通常静止的故障机制。关键词 - 诊断;惯性测量单元;MEMS;测试;振动。
本文介绍了一种计算受正弦随机载荷作用的部件高周疲劳寿命的方法。该计算方法基于频域中的频谱方法。当有限元分析计算时间过长时,这种方法比时域方法具有显著优势。统计雨流循环直方图直接来自正弦随机应力谱。将循环应用于适当的材料疲劳曲线以获得估计寿命。提供了一个案例研究来说明该方法,该方法使用了一个安装在直升机上的部件。与传统时域方法进行了比较,结果显示一致性极佳。本文最后展示了如何扩展此方法以涵盖正弦随机扫频激励的情况。
内径千分尺(卡尺型)。内径千分尺(杆型)。微米深度计。超微米。万能测量机。电限位比较仪。目测仪。表盘比较仪。光学平面。光学比较仪。轮廓测量投影仪。工具制造显微镜。光学分度头。正弦杆。安装在量块上的正弦杆。正弦板。带底板的正弦板。千分表(齿轮系类型)。千分表测试指示器。表面板。工具制造商的平板。硬化钢方形。管螺纹量规检查块。圆柱塞规,单端实心。圆柱塞规,单端渐进式。圆柱塞规,双端。圆柱塞规,可更换。圆柱塞规,可逆。普通锥形塞规。螺纹塞规。锥形螺纹管塞规。锥形普通管塞规。渐开线花键塞规。直边花键塞规。校准塞规。刻度塞规。平塞规。杂项塞规。普通环规。双环规。渐进环规。螺纹环规。锥形螺纹管环规。锥形普通管环规。花键环规。螺纹管三辊量规。锥形平管三辊量规。可调式卡规。可调式长度量规。组合式环规和卡规。
物理尺寸/重量4 I/O插槽6.2“ W x 8.7” d x 7.1“环境*电气隔离350 VRMS温度(工作)-40°C至70°C温度(存储)-40°C至85°C湿度0至95%,非调节MILSD-810G振动MIL-STD-810G以及下面的IEC Specs(IEC 60068-2-64)10–10006 000-1-1-1-1--BS,5 G(IEC 60068-2-64) 10–500 Hz,5 g,正弦电击MIL-STD-810G加上以下IEC标准(IEC 60068-2-27)100 g,半正弦3 ms,6个方向的18个冲击; 30 g,11毫秒半正弦,在6个方向高70,000英尺的18次冲击,最大EMI/RFI旨在满足MIL-STD-461功率需求电压9-36 VDC(115/220 VAC适配器可用)功率8 W(不包括I/O BOBARDS)功率质量需求,旨在满足MIL-STD-1275 MIL-STD-1275 MIL-STD-1275 MIL-STD-120,000,000,000,000,000,000> 130,000,000,000,000