具有空间规则化的电容式微重力流体质量计是一种可安装在推进剂容器上的传感器,可以以可确定的精度确定容器体积内的液体和气体的质量。该传感器由 1) 安装在容器壁内表面上的多个离散电极、2) 信号生成、数字化、信号调节和一般支持(例如电源)电子设备、3) 电极和电子设备之间的电连接以及 4) 用于将一组电容测量值(即电容矩阵)转换为体积分数的算法组成。电子设备生成正弦波并将其施加到单个电极上,然后电子设备测量所有其他电极上的电荷。电容只是电荷除以电压。对所有电极重复此操作,无需重复。对于具有固定体积的容器,只要知道流体成分、温度和压力,就可以使用理想气体定律将体积分数转换为质量分数。
图 1:MRI 图像 a) 干净的 MRI 图像 b) 莱斯噪声图像 小波是一种同时表示频率和时间信息的小波。傅里叶变换使用平滑的无限正弦波来分解信号。与傅里叶变换不同,小波使用不规则的波函数来分割信号,这使得小波成为分析不连续信号的理想工具 [5]。小波变换根据其收缩规则通过硬阈值和软阈值来执行。在硬阈值处理中,带噪小波的系数设置为零。但在软阈值处理中,带噪小波系数根据其子带系数进行调整 [6]。与传统傅里叶变换相比,小波变换在表达具有尖锐峰值和不连续性的函数以及重构和解构信号方面具有一定的优势。图
(1)瞬态电压抑制(TVSS)和EMI/FRI过滤这些UPS组件提供电涌保护和过滤电磁干扰(EMI)和射频干扰(RFI)。它们最大程度地减少了实用程序线上存在的任何激增或干扰,并保持敏感设备的保护。(2)整流器/功率因数校正(PFC)在正常运行中,整流器/功率因数校正(PFC)电路将效用AC功率转换为逆变器使用的调节DC功率,同时确保UPS使用的输入电流的波形几乎是理想的。提取此正弦波输入电流可实现两个对象:UPS尽可能将实用功率尽可能地使用。反射在实用程序上的失真量减少。这会导致建筑物中其他设备不受UP的保护。(3)逆变器在正常运行中,逆变器利用功率因数校正电路的直流输出,并将其变成精确的,调节的正弦波交流功率。在效用电源故障后,逆变器通过DC-to-DC转换器从电池接收其所需的能量。在两种操作模式中,UPS逆变器都在线且不断生成干净,精确,调节的AC输出功率。(4)电池充电器电池充电器利用DC总线中的能量,并精确调节电池以不断为电池充电。每当UPS连接到公用事业电源时,电池就会充电。转换器包括也用作PFC的升压电路。(5)DC-TO-DC转换器DC-DC转换器利用电池系统的能量,并将直流电压升至逆变器的最佳工作电压。(6)电池6K/10K标准包括内部的值调节,不可泄漏的铅酸电池。为了维持电池设计寿命,将UPS在15-25 C. C.(7)静态绕过UPS的环境温度下操作,UPS为连接负载的效用途径提供了替代路径,而UPS故障的情况很可能。如果UPS具有超负荷,超过温度或任何其他故障条件,UPS会自动将连接的负载转移到旁路。旁路操作由声音警报和照明琥珀色旁路LED表示。要手动将连接的负载从逆变器传递到绕过,请按下一次/关键按钮。
在过去的两三年中,太阳能系统已成为可行的可再生能源的可行来源,现在已广泛用于各种工业和国内应用。这样的系统是基于太阳能收集器,旨在收集太阳的能量并将其转换为电能或热能[3]太阳逆变器是太阳能系统中的关键组件。它将直流功率输出转换为交流电流,该电流可以馈入电网并直接影响太阳能系统的效率和可靠性。在大多数情况下,220VAC和110VAC需要电源。由于太阳能的直接输出通常为12VDC,24VDC或48VDC,因此必须使用DC-AC逆变器,以便能够为220VAC电子设备提供功率。逆变器通常由它们可以连续提供的交流电源量进行评级。一般而言,制造商提供5秒和1/2小时的激增数字,表明逆变器提供了多少功率。太阳逆变器需要高效率评级。用于使用太阳能电池的成本相对昂贵,采用高效率逆变器以优化太阳能系统的性能至关重要。高可靠性有助于保持维护成本较低。由于大多数太阳能站都在农村地区建造,而无需任何监控人力,因此要求逆变器具有胜任的电路结构,严格选择组件和保护功能,例如内部短路保护,过热保护和过度充电保护。[4]对DC输入电流的更广泛的耐受性起着重要作用,因为端子电压取决于负载和阳光。尽管储能电池在提供一致的电源方面具有重要意义,但由于电池的剩余容量和内部电阻条件的变化,电压的变化增加,尤其是当电池老化时,其端子电压变化范围扩大。在中高容量的太阳能系统中,逆变器,功率输出应以正弦波的形式形式,使能量传输的失真较少。许多太阳能电站配备了需要更高质量电网的小工具,当与太阳能系统连接时,需要正弦波,以避免公共电源网络中的电谐波污染。
DDS-3X25任意波形发生器具有1路任意波形输出,12位输出,同步信号输出,1路计数器/频率测量输入,6位输入和外部触发输入。用户可以通过鼠标任意编辑波形,也可以选择正弦波、方波、三角波、锯齿波、TTL、白噪声、高斯噪声、梯形波、指数波、AM、FM等常规波形。幅度、频率、偏移等参数也可设置。DDS-3X25的数据格式与泰克完全兼容,可以直接读取泰克示波器或泰克波形编辑软件生成的波形数据文件并重新显示波形。DDS-3X25采用DDS技术,具有频率精度高、波形分辨率高、可靠性高、软件支持范围广等优点。可广泛应用于各类电子实验室,并提供完善的二次开发接口,可轻松插入其他自动测量系统。
g全球电动运输需要开发电动驱动技术系统的高效和成本效益的解决方案。800-V EV架构的出现标志着改善车辆性能的重要一步。该技术可实现更高的充电能力和更快的充电时间。电池占电动车总成本的取代部分,因此重要的是要尽可能多地使用牵引力的能量并减少损失以增加车辆的范围。提高效率可能涉及对系统的性能要求和设计约束的仔细评估。电动驱动器中的牵引电动机通常由可变的频率驱动器(VFD)提供动力,以启用可变速度操作。电池的直流电压通过逆变器转换为三相交流电。逆变器包含通过合适的脉冲图案为电动机创建所需的正弦波的开关,图1。调节脉冲宽度会改变波浪频率,从而改变电动机速度。
前往利文沃斯堡参加预备指挥课程 (PCC) 的领导者最常问的问题之一就是家庭/生活平衡问题。即将在营级或旅级担任指挥官的领导者在他们之前的指挥中感受到了陆军要求的吸引力,他们努力了解如何创造自己的个人平衡。然而,陆军的平衡是随着时间的推移而形成的。陆军对家庭的要求可以用正弦波来表示,在关键发展时期逐渐增加,在两者之间的间隙中逐渐减少(见图 1,第 3 页)。布鲁斯·克拉克中将在其题为“所以你想要一个指挥”的文章中提出了 18 个问题来决定是否应该让领导者担任指挥。3 虽然克拉克参加了第一次和第二次世界大战,时代确实发生了变化,但有些事情并没有改变。克拉克的文章已提供给最近的 PCC 课程,不是作为必读内容,而是作为一种思考
liebert®PSI5锂离子还包括自动电压法规(AVR)技术,可防止公用电压波动,通过最大程度地提高电力电源的时间来延长电池寿命,并提供高级防止功率干扰。在电池模式下,Liebert PSI5提供纯正弦波输出,以保护敏感的服务器和网络设备。在满载时最多需要9分钟的运行时间,而在一半的负载下进行20分钟 - 远远超过了可比的竞争型号 - Liebert PSI5锂离子在中断期间提供了大量的运行时,以进行有序关闭。它带有旋转的LCD显示屏,以允许机架和塔架配置,提供有关UPS状态和操作条件的实时信息,并支持远程监视。它的能量效率也很高,在正常操作模式下充满负载时可提供高达98%的效率。您可以放心,您的业务受到此Vertiv™解决方案的保护,其中包括5年的完整标准保修。
摘要:本文使用差异差异放大器(DDTAS)提出了一种通用的第一阶类似物过滤器。DDTA采用了在亚阈值区域运行的批量驱动(BD)多输入的MOS MOS驱动技术(MI-MIST)。这会导致低压和低功率操作能力。因此,DDTA在Cadence环境中使用UMC的130 nm CMOS技术设计,其运行速度为0.3 V,并且消耗了357.4 NW。与先前的作品不同,所提出的通用前类似物过滤器提供了单个拓扑内的低通,高通和全通滤波器的第一阶传输函数。所有滤波器都可以使用转移功能的非反转,反转和电压增益。此外,提出的结构提供了高输入和低输出阻抗,这是电压模式电路所需的。可以通过电子控制滤波器的极频率和电压增益。低通量过滤器的总谐波失真计算为-39.97 dB,施加的正弦波输入信号为50 mV pp @ 50 Hz。所提出的过滤器已用于实现正交振荡器,以确保新结构的优势。
行为已被利用来将直流电压测量的精度提高五个数量级。基于超导约瑟夫森结阵列的最先进的精密电压标准系统现在可以提供量子精确、内在稳定、可编程的电压,直流电压的幅度大于 10 V,合成交流电压(如正弦波和任意波形)的幅度高达 2 V rms。已经开发出各种测量技术,用于音频范围内的交流测量应用和 60 Hz 功率计量。我描述了约瑟夫森电路和测量技术的主要发展,并总结了它们在电压计量应用中的当前性能和局限性。特别是,我强调使用基于量子的系统,即使它们产生看似低不确定性和可重复的结果,也不能保证测量的准确性。最后,我简要总结了如何利用量子精确的任意波形合成通过测量水三相点处电阻器的约翰逊噪声来测量玻尔兹曼常数,以及如何利用基于量子的约翰逊噪声温度计实现实用的电子主温度标准。