流场;2) 从电池顶部连接到对电极集电器;3) 参比电极集电器;4) 对电极集电器;a) 集电器箔上的工作电极;b) 隔板;c) 参比电极(钠金属);d) 对电极(钠金属);e) 对电极安装板。b) DEMS 测量装置流程图。测量和控制单元的字母符号图例:C = 控制器,F = 流量,I = 指示器,P = 压力,T = 温度。
摘要:随着新能源汽车的推广,锂离子电池产业迎来了蓬勃发展的时期,目前锂离子电池产业发展迅速,潜力巨大,因此许多研究者将目光转向锂离子电池,以获得更优质的锂离子电池。本文从锂离子电池的概述、其基本性能指标、正极材料的分类及制备方法等方面对锂离子电池正极材料进行了综述,并进一步分析了锂离子电池正极材料的现状及改性策略,以提高其电化学性能。
由于未来需要管理的废旧电池数量巨大,回收锂离子电池 (LIB) 正成为一项当务之急。目前,将废旧 LIB 转化为再生产品的三种主要回收途径是火法冶金、湿法冶金或直接回收,而共沉淀法介于后两种途径之间:其关键单元操作是电池材料的浸出和阴极活性材料 (CAM) 再合成前体的共沉淀。由于浸出溶液对杂质的高度敏感性以及高质量 CAM 前体与溶解金属盐成分之间的紧密联系,对废旧 LIB 进行实验分析是找到最佳操作条件的关键步骤。为此,我们提出了一项实验活动来研究该过程中涉及的共沉淀和复杂化合物的形成。此外,我们还利用了严格模型在许多工业领域提供的支持,这也使化学工程和实验室分析受益。因此,在本研究中,我们还在 UniSim Design ® 上提出了一个严格的模拟模型,该模型带有热力学包 OLI ®,可以考虑所需的大多数不同的液固平衡。使用实验数据对模型进行验证,并对金属浓度、pH 值和螯合剂进行敏感性分析,以找到调节共沉淀结果的关键参数。目的是优化操作条件的选择,以限制通常昂贵且耗时的实验室测试和复杂分析的次数。
吩嗪是橡胶防老剂RT-base生产废渣的主要成分,仅我国RT-base废渣中吩嗪的年产量就超过1000吨,目前产生的吩嗪主要通过燃烧处理,每年释放出3500多吨二氧化碳和大量的氮氧化物。此外,吩嗪还是一种生物质可衍生的物质,可以从取之不尽的木质素衍生的邻苯二酚中高效、大量地生产。15,16吩嗪及其衍生物具有很强的氧化还原活性,被发现是优秀的OEM,包括阳极或阴极材料,在实际应用中显示出巨大的潜力。17 – 20其中,二氢吩嗪(DHP)衍生的正极材料表现出优异的性能,甚至与商业正极材料相媲美。 18,21 – 23 然而,该类材料的实际应用仍存在一些障碍需要解决。需要进一步努力提高它们的易获得性和比容量,即优化合成工艺和降低分子中非活性部分的比例。之前,我们报道了一种稳定但电容较低的 DHP 聚合物 (PVBPZ),其比容量仅为 95 mA hg − 1。PVBPZ 的低比容量主要是由于苄基部分在高电压下的电化学不稳定性,导致其无法利用第二氧化还原电位。因此,PVBPZ 只能
用于高容量正极材料的先进纳米涂层的研究和开发是目前固态电池(SSB)领域的热门话题。保护性表面涂层可防止正极材料与固体电解质直接接触,从而抑制有害的界面分解反应。这在使用硫代磷酸锂超离子固体电解质时尤为重要,因为这些材料的电化学稳定窗口较窄,因此在电池运行过程中容易降解。本文我们表明,LiNbO 3 涂覆的富镍 LiNi x Co y Mn z O 2 正极材料的循环性能在很大程度上取决于样品历史和(涂层)合成条件。我们证明,在 350°C 的纯氧气氛中进行后处理会形成具有独特微观结构的表面层,该表面层由分布在碳酸盐基质中的 LiNbO 3 纳米颗粒组成。如果在分别以 Li 4 Ti 5 O 12 和 Li 6 PS 5 Cl 作为阳极材料和固体电解质的颗粒堆叠 SSB 全电池中以 45 °C 和 C/5 速率进行测试,则在 200 次循环后仍可保留初始比放电容量的约 80%(~ 160 mAh·g −1 ,~ 1.7 mAh·cm −2 )。我们的研究结果强调了根据电极材料定制涂层化学对于实际 SSB 应用的重要性。
(283 mAh g -1 , 960 Wh kg -1 ) 19 , 层状 Li 1.2 Ni 0.13 Mn 0.54 Co 0.13 O 2 (~270 mAh g -1 , ~950 Wh kg -1 ) 20 ,
使用硫化物固体电解质 (SE) 的全固态电池 (ASSB) 是下一代能源装置的有吸引力的候选者,其寿命比使用有机溶剂的液态锂离子电池 (LIB) 更长。众所周知,即使在干燥室等环境中,硫化物 SE 暴露在潮湿环境中也会导致离子电导率降低并产生有毒的硫化氢。然而,暴露在潮湿环境中对 ASSB 电池性能的影响迄今为止尚未完全阐明。为了填补这一知识空白,本文描述了水分对硫化物 SE 未暴露或暴露在露点为 -20°C 的干燥室模拟空气中的 ASSB 正极耐久性的影响的研究。在电池耐久性评估之后,对正极进行了飞行时间二次离子质谱 (ToF-SIMS) 测量,并利用暴露的 SE 观察了电池中的特征降解模式。
制备浆料时,溶剂干燥后会对涂层的涂层重量产生重大影响。可以在制备浆料之前估算混合物的固体含量,但为了获得更准确的值,可以使用水分分析仪,例如 Ohaus MB120 (g)。这将加热样品以去除溶剂,同时记录其质量,一旦样品的质量停止下降,就可以给出固体含量重量百分比。
采用弱酸性电解液并采用 Zn 2+ /H + 双离子存储机制的水系锌离子电池在实现可与非水系锂离子电池媲美的高能量密度方面表现出巨大潜力。这项研究表明,水合碱离子调节碱金属插层钒酸盐层状化合物的形成。在各种钒酸盐材料中,锂插层钒酸盐具有最大的层间距和最无序的局部结构,在 0.05 A g -1 的 Zn 2+ /H + 双离子存储下表现出最大的存储容量 308 mAh g -1,并且原位 X 射线衍射和非原位 X 射线全散射和对分布函数分析证明了它具有改善的电荷转移和传输动力学和循环性能。我们的研究为设计用于高容量水系电池的层状钒酸盐材料提供了新的见解。
1 伊利诺伊大学芝加哥分校化学工程系,美国伊利诺伊州芝加哥 2 阿贡国家实验室材料科学部,美国伊利诺伊州阿贡 3 伊利诺伊理工学院化学工程系,美国伊利诺伊州芝加哥 4 阿贡国家实验室纳米材料中心,美国伊利诺伊州阿贡 5 阿贡国家实验室化学科学与工程部,美国伊利诺伊州阿贡 6 阿贡国家实验室先进光子源 X 射线科学部,美国伊利诺伊州阿贡 7 阿贡国家实验室能源系统部,美国伊利诺伊州阿贡 8 加州州立大学物理与天文系,美国加利福尼亚州北岭 通讯作者联系方式:kahchun.lau@csun.edu , hau.wang@anl.gov , curtiss@anl.gov