图1:我们的电池信息工作流程。数据收集管道:我们收集有机负电极相对于不同电荷载体(正电极材料)的有机负电极的微笑(简化的分子输入线进入系统)。10,这是微笑字符串到数字格式的连接版本。b架构我们的多任务机器学习(MT-ML)预测指标。MT-ML模型经过训练,以预测不同电池组件的多种属性。使用Selector-vector代表荷载体(正电极材料),性质和有机材料类(聚合物/分子)的变化。指纹与选择矢量串联,并用作MT-ML模型的输入。灰色版本的灰色代表模型的输入,较暗版本代表输出。通过将多个MT-ML模型的输出作为输入,在Holdout数据集中培训的 C META学习者。 元学习模型的输出是属性值(电压和特定容量)。 d最后,逆设计方法被授予。 我们采用一些参考有机材料,这些材料表现出更高的电池性能或更高的稳定性或生物降解性。 我们迭代地添加氧化还原活跃的部分或在有机材料的不同位置取代元素和键,以创建数百万个有机材料的库。 我们通过使用拟议的元学习模型来筛选具有较高电压和特定能力的潜在候选者。C META学习者。元学习模型的输出是属性值(电压和特定容量)。d最后,逆设计方法被授予。我们采用一些参考有机材料,这些材料表现出更高的电池性能或更高的稳定性或生物降解性。我们迭代地添加氧化还原活跃的部分或在有机材料的不同位置取代元素和键,以创建数百万个有机材料的库。我们通过使用拟议的元学习模型来筛选具有较高电压和特定能力的潜在候选者。
氧化自我 - 充电电池已经出现了对全天候电动设备供电的需求。自我充电的低效率一直是目前的关键挑战。在这里,通过将血红蛋白(HB)作为聚苯胺(PANI) - 锌电池系统中的正电极添加剂来实现一种更有效的自氧化自我 - 充电机制。血红素充当催化剂,通过调节O 2的电荷和自旋态来降低自氧化反应的能屏障。为了实现自我充电,吸附的O 2分子捕获了降低的(已放电状态)PANI的电子,从而导致锌离子的解吸和Pani的氧化以完成自动充电。50个自动充电/放电周期后,电池可以放电12分钟(0.5 C),而在没有HB的情况下几乎没有排放能力。这种生物学 - 受启发的电子调节策略可能会激发新的想法,以提高自我充电电池的性能。
Natron的电池技术中发现的特定材料平台基于一个称为Prussian Blue的电极家族。几个世纪以来生产和商业地用于颜料和染料,但仅在过去的十年中,普鲁士蓝色才成为钠离子储能的候选者。普鲁士蓝色为色素行业提供的相同优势,包括化学稳定性和无毒性,使其成为用于电池中的有吸引力的材料。NATRON电池电池与传统锂离子和铅酸电池具有相同的结构,包括正电极(阴极),负电极(阳极),两个电极之间的多孔分离器和一个液体电解质,该电解质可以使电荷(离子)在电极之间向后传递(离子)。所有这些细胞组件都包装到密封的容器中,并带有正末端和负末端,可将电池连接到电路。NATRON的关键
z电子邮件:anastasiia.mikheenkova@kemi.uu.se摘要锂离子电池(LIB)已成为转向电动运输的基石。试图减少生产负载并延长电池寿命,因此必须了解最先进的Libs中的不同降解机制。在这里,我们分析了循环中的运行温度和电荷(SOC)范围如何影响汽车21700级电池的老化,该电池从Tesla 3远程2018远程电池组中提取,其中包含Lini X Co Y Al Z O 2(NCA)的正电极和负电极,并且含有SIO X -C。在给定的研究中,我们使用电化学和材料分析的组合来了解细胞中的降解来源。在此表明,锂库存的损失是细胞中的主要降解模式,在负电极上的材料损失是由于在低SOC范围内循环时会有重要的贡献者。降解在升高的温度下占主导地位,循环到高SOC(超过50%)。图形摘要
●环保且无污染:整个模块中使用的材料无毒且无污染; ●长期安全的寿命:电池模块的正电极材料由LifeOp4制成,LifeOp4具有良好的安全性能和长时间的使用寿命; ●保护功能:电池管理系统可以保护电池模块免受过电气,过度充电,过度电流和高温/低温; ●平衡功能:电池管理系统具有被动平衡,可以平衡电池模块中的每个单元格; ●容量扩展:灵活配置,可以平行连接多个电池模块,适合不同的备份时间要求; ●低功耗:电池具有自动睡眠功能。未连接到任何电动设备时,它可以输入低功耗状态以减少自我损害; ●没有记忆:没有记忆效果,出色的浅荷收费和排放性能; ●宽温度范围:工作温度范围-20℃〜60℃,充电0 ℃〜45℃,排放-20 ℃〜60℃,具有良好的排放性能和循环寿命,●便携性:小尺寸,轻巧,标准的嵌入式模块更方便地安装和维护
在记录中,锂电池由负电极(阳极),正电极(阴极)和电解质组成。这三个元素插入水密聚合物包膜或细胞中。阳极通常由石墨组成。阴极由Lithié过渡金属氧化物组成。主要遇到的电池是LFP(锂,铁,磷酸盐)电池或NMC(锂,镍,锰,钴)电池。电解质主要由氟化锂盐(通常是锂的六氟磷酸盐)和有机碳酸盐型溶剂组成。在热失控或火灾中,电池中存在的元素及其分解产物可以在发射的烟雾中,以颗粒或气体的形式找到。可用的研究[1至3],很少有人在这个主题上,表明烟雾的复杂组成取决于许多参数。将干预电池的组成,其大小,负载,炎症,气体是否不燃烧,其他元素的燃烧(塑料,电缆等)。在开放或封闭空间中的事件过程也应考虑在内。根据研究,以不同浓度发现的气体和颗粒主要包括在没有燃烧的情况下(释放无火烟),有机碳酸盐(碳酸盐
电池技术最近已成为全球研究的重点。锂铁磷酸锂(LFP)电池是一种较新的可充电电池类型,由正和负电极材料组成(或等等。2020)。正电极由LFP制成,而负电极主要由铜和石墨制成(Raccichini等人。2019)。锂铁(Li-Fe)电池由于其高能量密度,耐用性,安全性和友善性而在储能扇区中脱颖而出(Wang,2021)。他们还对高温提供了极好的抵抗力,可确保在极端条件下可靠的性能(Li等人2018; Du等。2022)。由电动汽车市场繁荣驱动的Li-Fe电池需求激增预计到2030年将与全球电动汽车销售达到2150万,年增长率为24%(International Energy Agency&Birol 2013)。这种增长有望在2030年到2030年产生500万吨Li-Fe电池浪费,这突显了有效的回收方法的紧迫性,以防止环境损失和资源损失(Beaudet等人。2020)。如果Li-Fe电池没有正确回收,电池浪费中的重金属可能会污染土壤和地下水,对环境和生态系统构成严重威胁(Zhang等人2024)。研究确定了三种主要的回收方法:高温法,水透明和直接
多功能结构电池对各种高强度和轻量级应用都具有很高的兴趣。结构电池通常使用原始的碳纤维作为负电极,功能化的碳纤维作为正电极,以及机械强大的锂离子运输电解质。然而,基于碳纤维的阳性电极的电化学循环仍限于液体电解质的测试,该测试不允许以真实的方式引入多功能性。为了克服这些局限性,开发了带有结构电池电解质(SBE)的结构电池。这种方法可提供无质量的能源存储。电极是使用经济友好,丰富,廉价和无毒的铁基材料(如Olivine Lifepo 4)制造的。氧化石墨烯以其高表面积和电导率而闻名,以增强离子传输机制。此外,固化吸尘器注入的固体电解质以增强碳纤维的机械强度,并为锂离子迁移提供了介质。电泳沉积被选为绿色过程,以制造具有均匀质量负荷的结构阳性电极。可以在C/20时达到112 mAh g-1的特定能力,从而使Li-ion在SBE的存在下平稳运输。阳性电极的模量超过80 GPa。在各种质量载荷中都证明了结构性电池阳性的半细胞,从而为消费技术,电动汽车和航空航天部门的多种应用而量身定制它们。
锂离子电池(LIB)已成为转向电动运输的基石。试图减少生产负载并延长电池寿命,因此必须了解最先进的Libs中的不同降解机制。在这里,我们分析了循环范围的运行温度和电荷(SOC)如何范围范围范围是从TESLA 3远程2018远程电池组中提取的汽车21700级电池的老化,该电池含有含有正电极的lini x Co y Al Z O 2(NCA)和负电极含有SIO X -C。在给定的研究中,我们使用电化学和材料分析的组合来了解细胞中的降解来源。在此表明,锂库存的损失是细胞中的主要降解模式,由于在低SOC范围内循环时,负电极上的材料损失在负电极上。降解在升高的温度下占主导地位,循环到高SOC(超过50%)。©2023作者。由IOP Publishing Limited代表电化学学会出版。这是根据创意共享属性的条款分发的一篇开放访问文章,非商业无衍生物4.0许可(CC BY- NC-ND,http://creativecommons.org/licenses/by-nc-nc-nd/4.0/),如果没有任何原始的工作,则可以在任何原始工作中更改,从而允许在任何媒介中进行过重用,分发,并不更改。要获得商业重复使用的许可,请发送电子邮件至permissions@ioppublishing.org。[doi:10.1149/1945-7111/aceb8f]