为了在现实世界中部署强化学习(RL)代理,它们必须能够推广到看不见的环境。但是,RL在分布外的概括方面挣扎,通常是由于过度拟合培训环境的细节。尽管可以应用监督学习的正则化技术来避免过度插入,但超级学习和RL之间的差异限制了其应用。为了解决这个问题,我们提出了RL的信噪比调节的参数不确定性网络(SNR PUN)。我们将SNR作为正规化网络的参数定向的新量度,并提供了正式分析,解释了SNR正则为什么对RL效果很好。我们证明了我们提出的方法在几个模拟环境中概括的有效性;在一个物理系统中,显示了使用SNR PUN将RL应用于现实世界应用程序的可能性。
在计算最佳策略时使用较短的计划范围的折扣正则化是一个流行的选择,可以避免面对稀疏或嘈杂的数据时过度使用。通常将其解释为脱颖而出或忽略延迟的影响。在本文中,我们证明了折扣正则化的两种替代观点,这些观点暴露了意外后果并激发了新颖的正则化方法。在基于模型的RL中,在较低的折现因子下计划的行为就像先前的,具有更强的州行动对,并具有更多的过渡数据。从数据集中估算过过渡矩阵时,跨州行动对的数据集估算了不均匀的数据集时,这会导致性能。在无模型的RL中,折扣正则化等同于计划使用加权平均贝尔曼更新,在该计划中,代理计划似乎所有州行动对的值都比数据所暗示的更接近。我们的等价定理促使简单的方法通过在本地设置个人状态行动对而不是全球的参数来概括常规ization。我们证明了折扣正则化的失败以及如何使用我们的州行动特定方法在经验示例中使用表格和连续状态空间进行纠正。
具有二次正则化的线性程序由于其在最佳运输方面的应用而引起了新的兴趣:与熵正则化不同,平方惩罚导致最佳运输耦合的近似值稀少。众所周知,当正则化参数趋于零时,在任何多层层上的四个正规化线性程序的解会收敛到线性程序的最小值解决方案。但是,该结果仅是定性的。我们的主要结果通过指定正规化参数的确切阈值来量化收敛性,然后正则化解决方案还求解线性程序。此外,我们在阈值之前绑定了调节解的次优性。这些结果与大规模正规化制度的收敛速率相辅相成。我们将一般结果应用于最佳传输的设置,在那里我们阐明了阈值和次级次要性如何取决于数据点的数量。
1 ZARIA AHMADU BELLO大学计算机科学系2计算机科学系,联邦教育学院,Zaria *通讯作者电子邮件地址:shuwajunior@gmail.com摘要在过去几十年中,机器逐渐接管了人类的日常活动,例如在线购物和服装。 必须开发人工智能技术,以帮助人们相应地检测和对服装设计进行分类。 早期解决服装图像分类问题的努力需要仔细选择和从服装图像数据集中提取某些功能,以使数据集的功能高度表示。 但是,这些方法在定义和捕获广泛的图像特征方面很难。 研究表明,卷积神经网络(CNN)模型可以比传统的机器学习(ML)方法更好地解决图像分类问题。 但是,他们面临着诸如过度拟合,高参数调整,嘈杂数据和培训数据不足之类的问题。 这项工作解决了过度拟合的问题,该问题降低了服装图像分类模型的分类/概括性能。 我们提出了四(4)个CNN模型,其中将称为辍学的正则化方法添加到每个层以处理过度的问题。 在四个模型中以最佳结果作为拟议模型采用了最佳结果。 与使用相同数据集和最先进的建筑设计训练的其他模型记录的结果相比,准确性提高了1.77%。 这是一个1 ZARIA AHMADU BELLO大学计算机科学系2计算机科学系,联邦教育学院,Zaria *通讯作者电子邮件地址:shuwajunior@gmail.com摘要在过去几十年中,机器逐渐接管了人类的日常活动,例如在线购物和服装。必须开发人工智能技术,以帮助人们相应地检测和对服装设计进行分类。早期解决服装图像分类问题的努力需要仔细选择和从服装图像数据集中提取某些功能,以使数据集的功能高度表示。但是,这些方法在定义和捕获广泛的图像特征方面很难。研究表明,卷积神经网络(CNN)模型可以比传统的机器学习(ML)方法更好地解决图像分类问题。但是,他们面临着诸如过度拟合,高参数调整,嘈杂数据和培训数据不足之类的问题。这项工作解决了过度拟合的问题,该问题降低了服装图像分类模型的分类/概括性能。我们提出了四(4)个CNN模型,其中将称为辍学的正则化方法添加到每个层以处理过度的问题。在四个模型中以最佳结果作为拟议模型采用了最佳结果。与使用相同数据集和最先进的建筑设计训练的其他模型记录的结果相比,准确性提高了1.77%。这是一个关键字:正规化,神经网络,分类,人工智能,计算机视觉,过度拟合,辍学的介绍在过去几十年中,机器正在逐渐接管人类的日常活动,例如在线购物和衣服操纵。在线购物和衣服操纵需要某些功能,例如颜色,设计和衣服的形状,以便能够相应地识别和分组它们。必须开发人工智能技术,可以适当地检测和对服装设计进行分类,以使机器执行在线购买的任务,并帮助他们有效地决定人类的衣服类型。这可以帮助用户更好地了解产品,并吸引来自不同位置的更多客户,从而提高销售额。对客户的口味,文化和社会经济地位的更深入了解也可以通过这种信息来帮助(Henrique等,2021)。服装时装设计的分类属于称为图像分类的计算机视觉中更广泛的群体。将对象分类为各种类别的任务可以被视为人类简单的任务,但对于机器来说是复杂的。
海上情境意识(MSA)长期以来一直是海上交通监视和管理领域中的关键重点。船舶交通的复杂性越来越多,源于多个船舶之间的复杂多属性交互,再加上交通动态的连续发展,在达到准确的MSA方面构成了重大挑战,尤其是在复杂的港口水域中。这项研究致力于建立高级MET的那言来分区海上流量,旨在增强交通模式的解释性和加强船舶反碰撞风险管理。具体来说,最初引入了三种相互作用措施,包括冲突临界,空间距离和接近速率,以量化船舶之间时空相互作用的不同方面。随后,设计了一个半监督的光谱正则化框架,以熟练地适应多个相互作用信息和从历史分配结构中得出的先验知识。该框架有助于将区域交通分割为多个集群,其中具有相同集群的船舶表现出较高的时间稳定性,冲突连通性,空间紧凑性和收敛性运动。同时,设计了一种自适应超参数选择模型,以寻求各种情况下的最佳交通分区结果,同时还将用户偏好纳入特定交互指标。使用来自宁波 - Zhoushan端口的AIS数据进行综合实验,以彻底评估模型的功效。研究发现,从案例分析和模型比较中发现了拟议方法清楚地展示了所提出的方法成功解构区域交通复杂性,捕获高风险区域并加强战略性海上安全措施的能力。因此,该方法具有巨大的希望,可以推进海上监视系统的智能并促进海上交通管理的自动化。
抽象背景。免疫疗法是几种癌症的有效“精确医学”治疗方法。胶质母细胞瘤患者中潜在基因组(放射基因组)的成像签名可能是肿瘤宿主免疫设备的术前生物标志物。经过验证的生物标志物在IM Munotherapy临床试验期间有可能对患者进行分层,如果试验有益,则有助于个性化的新辅助治疗。整个基因组测序数据的使用增加,生物信息学和机器学习的进步使得这种速度可见。我们进行了系统的综述,以确定与胶质母细胞瘤的免疫相关放射基因组生物标志物的发育程度和验证程度。方法。使用PubMed,Medline和Embase数据库进行了PRISMA指南进行系统的审查。定性分析是通过合并Quadas 2工具并要求清单进行的。Prospero注册:CRD42022340968。提取的数据不足以进行荟萃分析。结果。九项研究,所有回顾性,都包括在内。从感兴趣的磁共振成像体中提取的生物标志物包括明显的扩散系数值,相对的脑血体积值和图像衍生的特征。这些生物标志物与肿瘤细胞或免疫细胞的基因组标记或患者存活相关。大多数研究对执行指数测试的偏见和适用性问题具有很高的风险。结论。放射基因组生物标志物具有为胶质母细胞瘤的PATETS提供早期治疗选择的潜力。由这些生物标志物分层的靶向免疫疗法具有允许在临床试验中允许不同的新辅助精度治疗方案。但是,没有验证这些生物标志物的前瞻性研究,并且由于研究偏见而限制了解释,而很少有可推广性的证据。
摘要 - 在无人驾驶汽车(UAV)上安装可重构的智能表面(RIS)有望改善传统的地面网络性能。与在无人机上部署被动性RIS的调用方法不同,这项研究探讨了空中活性RI(AARIS)的效率。特别是,研究了AARIS网络的下行链路传输,在此,基站(BS)利用速率分类的多个访问(RSMA)进行有效的干扰管理,并从AARIS支持AARIS的支持下,以共同扩大和反射BS的发射信号。考虑到有效RI的非琐碎能源消耗和无人机的能源储能有限,我们提出了一种创新的元素选择策略,以优化主动RIS元素的ON/OFF状态,该元素的ON/OFF状态可以自适应地管理系统的功耗。为此,提出了一个资源管理问题,旨在通过共同优化BS处的发射界限,元素激活,相移,相位移位和Active RIS的放大因子,用户的RSMA共同数据速率以及无人自由的RSMA共同数据速率,以及无人用的IAV的发电率来最大程度地提高系统能量效率(EE)。由于无人机和用户移动性的动态性质,深入的增强学习(DRL)算法设计用于资源分配,利用元学习来适应快速时变的系统动力学。根据模拟,整合元学习的系统EE会显着增加36%。此外,用AARIS代替固定的陆地活性RI会导致EE增强26%。
图1(a)说明了对外部参数不准确引起的对齐图像和点云的挑战。很难实现直接的几何对齐。要解决因未对准而导致的错误的积累,我们提出了GSFusion。此方法搜索附近的功能,以确保几何和语义对齐,从而使每个LiDAR Voxel功能能够与融合过程中的K相邻升起的像素特征进行交互。这扩大了感知字段,从而使图像和点特征更全面,更强大。此外,图。1(b)突出显示了激光点云的稀疏性对与摄像机相互作用的影响。为了解决这个问题,渲染过程可确保LIDAR功能,相机功能或LIDAR相机功能的密集表示,如图1(c)。这确保了足够的体素相互作用并提高整体性能。
正则化是全波形倒置(FWI)的重要方面,正规化提出的现实事先可以帮助降低逆问题的非线性和不良性。最近,生成扩散模型在学习数据分配方面表现出了出色的性能,使其成为反问题的理想事务。我们建议利用特定的扩散模型,即denoising扩散概率模型(DDPM),以制定FWI的重态化。分数蒸馏技术被设置为绕过神经网络的Ja-Cobian的计算,从而导致正规化项的强大而有效的实现。使用Marmousi模型的初始示例证明了所提出的方法的有效性。
国际劳工组织将“非正规经济”定义为“法律或实践上未得到正规安排覆盖或覆盖不足的工人和经济单位的所有经济活动”。非正规经济包括非正规就业和非正规经济单位。非正规性给工人、企业、政府和社会带来了一系列挑战,但也许其中最重要的就是相关的体面劳动缺失。非正规工人收入较低,获得劳工权利保护和社会保障的机会较少。对于企业而言,非正规性与生产力较低有关,还会带来诸多挑战,例如融资和市场准入受限,以及危机时期政府企业支持计划和刺激措施的援助有限。