在操作过程中,磁场由步进频率的交变场调制。由于多种原因,这通常不如稳定场那么重要。步进频率场的幅度随着步进频率的增加而减小,并且仅在几百赫兹以下与稳定场相当。在低步进速率下,出于机械原因,使用微步进是正常的,微步进会产生正弦磁通波形。在几百赫兹以上,使用全步进驱动是正常的,全步进驱动试图产生矩形磁通波形。然而,绕组电感的滤波作用逐渐降低了几百赫兹以上场的所有频率分量的幅度,因此,步进频率下的漏磁场的交变分量在所有实际用途中都可以被视为正弦波。大多数现代步进电机驱动器通过开关动作实现绕组中的电流调节,这也会调节磁漏场。与场的稳定和步进频率分量相比,漏磁场的幅度通常非常小,通常小于 10%。在大多数情况下,切换在每步之后的前几毫秒内被禁用,因此在步进速率高于 500 Hz 时根本不存在切换。步进电机在 500 Hz 和 1 kHz 步进速率之间实现其最大机电效率,并且设计电动真空机构以在这些速率下旋转是标准做法,以尽量减少总能量输入,从而减少排气。幸运的是,这还可以减少漏磁通的交变分量。
VLT MICRO 特点 • 安装和操作简单。• 紧凑的整体尺寸节省空间和安装成本。• 所有型号均通过 UL 和 C-UL 认证。• 所有型号均封装在受保护的底盘外壳 (IP 20) 中 • 非常适合面板安装。• 提供可选的 DIN 导轨安装。• 提供可选的远程键盘安装套件。• 轻松访问所有终端连接。• 可编程数字输入和输出 • 低噪音运行。• 载波频率可调至 18 kHz,运行安静。载波频率高达 16 kHz 时,可提供完全连续输出。• 可编程 V/Hz,可在可变扭矩负载下实现最佳运行。• 过载电流 — 1 分钟内为额定电流的 150%。• 自动电压调节根据负载改变输出电压。重载时始终提供全电压,但在轻载时电压会降低,以实现最高效率和最低运行温度。• S 曲线或线性加速和减速斜坡曲线。• 三个步进频率。• 可编程偏移和增益,可轻松适应非标准速度参考信号。• 瞬时断电后自动与电机同步。• 参数锁定可防止未经授权的更改。• 可编程直流制动。• 故障历史记录。• 本地速度操作可以通过控制面板上的电位器或“UP”“DOWN”键进行。
背景:在啮齿动物,帕金森氏症和脊髓损伤的啮齿动物模型中,已经研究了中脑运动区域(MLR)的深脑刺激(DB)。临床DBS试验已针对帕金森氏病患者作为步态功能障碍的治疗疗法密切相关的小儿核核,报告的结果混合了。最近的研究表明,优化MLR目标可以提高其有效性。目的:我们试图确定猪中间脑中的立体定位靶向和DBS在解剖学上与以前鉴定为其他物种中MLR相似的区域是否可以启动和调节持续的运动,这是迈向产生大型gait的大动物神经化模型的一步。方法:我们使用EMG记录,关节运动学和速度测量值对Yucatan Micropigs中的Medtronic 3389电极植入了假定的MLR结构中,以表征该区域急性DBS的运动作用。结果:MLR DBS在自由移动的微孔中启动并增强了运动。有效的运动部位以楔形核和刺激频率控制的运动速度和步进频率为中心。靶向刺激诱发了防御性和厌恶行为,这些行为排除了动物的运动。结论:猪似乎具有MLR,可用于模拟该步态促进中心的神经调节。©2021 Elsevier Inc.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。这些结果表明,在与帕金森氏病,脊髓损伤或中风等状况相关的步态延迟的情况下,猪是指导未来临床研究的有用模型。