对于损伤容错设计 [1] 来说,疲劳和腐蚀是航空工业 [2] 中两个主要故障原因。激光冲击喷丸 (LSP) 是一种表面处理技术,可在易受疲劳现象影响的关键区域引入具有较大穿透深度的压缩残余应力。这些压缩残余应力可能导致疲劳裂纹扩展 (FCP) 延缓,如由 AA2024-T3 [3] 组成的 M(T) 试样或搅拌摩擦焊接的 AA7075-T7351 [4] 所示。然而,压缩残余应力的产生总是会导致结构内的拉伸残余应力以保持应力平衡。这些拉伸残余应力可能会导致 FCP 速率加速。因此,准确了解施加的残余应力场并预测由此产生的 FCP 速率对于保证有效和优化地应用 LSP 是必要的。 FCP 模拟中经常采用的一种策略是计算疲劳载荷循环的最小和最大应力强度因子,并使用这些应力强度因子作为 FCP 方程的输入[5–8]。所应用的 FCP 方程将裂纹尖端的应力强度因子与 FCP 速率联系起来。这项工作应用了 Paris 和 Erdogan [9] 开发的第一个 FCP 方程、Walker 方程 [10],例如,该方程成功应用于激光加热引起的残余应力场 [11],以及 NASGRO 方程 [12],该方程现在经常用于预测 FCP 速率 [5–7]。不同的 FCP 方程具有不同的计算精度和不同的计算效率。
摘要:上一届政府间气候变化专门委员会 (IPPC) 评估报告强调,减少二氧化碳排放的行动迄今为止未能有效实现 1.5 C 限制,需要采取激进措施。废弃生物质的升级、电力到 X 范式和氢等创新能源载体等解决方案可以为向低碳能源系统的过渡做出有效贡献。在此背景下,本研究的目的是通过研究厌氧消化与热化学转化过程的创新整合优势来改进湿残余生物质的氢气生产过程。此外,该解决方案集成到由电网和光伏电站 (PV) 组成的混合电源中,并由热能存储 (TES) 系统提供支持。通过 Simulink/Simscape 模型仔细评估了工厂的性能及其输入能源需求(将电力需求分为光伏系统和国家电网)。初步评估显示,该工厂的氢气产量表现良好,达到 5.37% kg H2 /kg 生物质,远高于单一工艺的典型值(约 3%)。这一发现表明生物和热化学生物质增值路线之间存在良好的协同作用。此外,热能存储显著提高了转化工厂的独立性,几乎将电网的能源需求减少了一半。
[a] 条件:CD 3 CN,298 K,[ 1 ] = [ 2 + ](每个实验的初始浓度报告于表 S2 中),l irr = 365 nm。[b] 通过化学光化测定法测定的 365 nm 处的光子流。[c] 反应 3 在稳态下的速率;参见图 2 的符号约定。[d] 循环的量子产率;括号中为每个循环吸收的光子数(1/ F cy )。[e] 根据模拟浓度值确定的反应 1 的残余化学势。[f] 根据实验浓度值确定的反应 3 的残余化学势。[g] 在稳态操作循环中,自组装步骤所耗散的自由能。[h] 非平衡稳态下自组装步骤中储存的自由能密度。 [i] 能量转换效率,计算为 𝑇𝛥 !" 𝛴 #$ 与稳定状态下一个运行周期内吸收的总自由能之比。
由于沉积区域和基材的快速加热和冷却循环,定向能量沉积 (DED) 工艺沉积区域附近会出现复杂的残余应力分布。残余应力会导致沉积区域附近出现缺陷和过早失效。人们已经对多种热处理技术进行了广泛的研究,并将其应用于通过 DED 工艺沉积的部件,以释放残余应力。本研究旨在利用热机械分析研究通过 DED 和淬火工艺制备的试样的残余应力特性。采用耦合热机械分析技术预测淬火步骤后沉积区域附近的残余应力分布。沉积和冷却措施的有限元 (FE) 分析结果表明,在弹性恢复完成后,沉积区域附近的残余应力显著增加。加热和淬火阶段的 FE 分析结果进一步表明,在淬火初始阶段,沉积区域附近的残余应力显著增加。此外,观察发现,无论沉积材料如何,淬火残余应力均小于弹性恢复后的残余应力。
退火和淬火等热处理工艺对于确定金属材料的残余应力演变、微观结构变化和机械性能至关重要,残余应力在部件性能中起着更大的作用。本文研究了热处理对使用 LENS 制造的 AISI 1025 中残余应力的影响。开发并模拟了有限元模型以分析残余应力的发展。适用于熔融沉积成型 (FDM) 长丝生产中的工具和模具应用的 AISI 1025 样品是使用激光工程净成型 (LENS) 工艺制造的,然后进行热处理,即进行退火和淬火工艺。将所研究的热处理样品的材料微观结构、残余应力和硬度与原始样品进行了比较。结果表明,与原始样品相比,退火后,拉伸残余应力降低了 93%,导致裂纹扩展速率降低,尽管硬度显著降低了 25%。另一方面,淬火后记录到 425±14 MPa 的高拉伸残余应力,硬度提高了 21%。
垃圾焚烧发电 (EfW) 是一种废物处理过程,将经过再利用、回收和堆肥处理的残余废物燃烧,以电能和/或热能的形式产生能量。与垃圾倾倒或填埋相比,EfW 被认为是一种更环保的残余废物处理方法。尤其是在英国,EfW 行业的作用尤为突出。英国 EfW 设施的发电量约占全国总发电量的 3.2%,但也排放了约 3.5%(14.4 百万吨二氧化碳)的年度净领土温室气体排放量(2022 年数据)。随着英国从 2028 年开始扩大其排放交易体系 (UK-ETS) 的范围,将废物燃烧和 EfW 设施纳入其中,EfW 行业的脱碳变得至关重要。在这里,碳捕获和储存 (CCS) 的整合有助于维持 EfW 设施作为可持续低碳能源的来源,同时也为英国的减排目标做出有意义的贡献。
收稿日期:2022年3月15日;接受日期:2022年5月22日摘要由于摩擦、切屑形成和切削区域产生的热量,通过机械加工生产的零件具有残余应力。机械加工过程引起的残余应力对机加工零件的疲劳寿命有很大影响,从而缩短其使用寿命。为了提高机加工零件在实际应用中的性能,例如疲劳寿命、耐腐蚀性和零件变形,应研究和尽量减少残余应力。因此,预测和控制机械加工引起的残余应力对于提高机加工零件的质量非常重要。本文回顾了机械加工引起的残余应力的最新成果,以便进行分析和降低。对残余应力测量的不同方法进行了回顾和比较,包括破坏性方法、半破坏性方法和无损检测 (NDT) 方法,以便进行开发。为了最大限度地减少机加工部件中的残余应力,本研究考察了加工工艺参数、高速加工条件、冷却液、切削刀具磨损、边缘和半径对残余应力的影响。回顾了残余应力的分析和半分析建模、数值和 FEM 模拟技术,包括残余应力建模方法的先进方法,以预测机加工部件中的残余应力。研究了各种合金(如铝合金、生物医学植入材料、难切削材料(如镍基合金、钛基合金、英科乃尔基合金和不锈钢合金)中的残余应力,以提供有效的机加工部件残余应力最小化方法。人们已经意识到,评估和分析已发表论文的最新进展将有助于发展该研究领域。关键词:残余应力;加工操作
摘要:热机械特性高度依赖于定向能量沉积 (DED) 工艺的沉积策略,包括沉积路径、道间时间、沉积体积等,以及基材的预热条件。本文旨在通过有限元分析 (FEA) 研究沉积策略和预热温度对采用 DED 工艺沉积在 AISI 1045 基材上的 Inconel 718 高温合金热机械特性的影响。针对不同的沉积策略和预热温度建立了 FE 模型来研究热机械行为。采用 16 种沉积策略进行 FEA。通过比较实验和 FEA 的温度历史来估算热沉系数,以获得合适的 FE 模型。研究了沉积策略对设计的小体积沉积模型中残余应力分布的影响,以确定可行的沉积策略。此外,还研究了沉积策略和预热温度对大体积沉积设计部件残余应力分布的影响,以预测合适的DED头沉积策略和合适的基体预热温度。
山区仍有大片的瑞木和塔瓦森林,其中大部分为公有,受法律保护。一些山区有灌木丛。这是森林再生的第一阶段,可能包含濒危植物物种。国际公认的旺格马里诺湿地大部分也受法律保护。这些地区和怀卡托下游湖泊共同构成了从东北部(米兰达)到西南部(奥特亚港)的半连续本土栖息地带。在此带之外,本土植被和栖息地已严重枯竭,特别是在低地地区,在某些情况下只剩下少量残余。这些残余中很少有正式的保护。这些残余的低地地区,包括森林和具有国际意义的湿地,对生物多样性做出了重要贡献。主要水生景观有怀卡托河、怀帕河、下怀卡托湖、汉密尔顿附近的泥炭湖、拉格伦(Whaingaroa)港和奥特亚港。
记录表明,城市定居始于公元 600 年左右,当时圣莱纳在该地区建立了一座修道院,而人们认为早期的城墙城镇可能可以追溯到 12 世纪的盎格鲁-诺曼时期。到 1628 年,该镇被建立并合并为一个行政区,其中包括该镇的修道院区。在同一十年内,一座名为福克兰堡的堡垒在桥边建造,人们认为今天该地点存在的城墙可能是这座堡垒的残余,或者更可能是前警察营房的残余,后者建于 1800 年代左右,取代了福克兰堡。人们认为,早期城镇的大部分在 17 世纪的克伦威尔战争中被摧毁,后来重建。在 19 世纪早期的拿破仑战争期间,这里建立了进一步的防御工事,包括位于该镇西边 Crank Road 的伊丽莎堡,其遗址至今仍然存在。