残基相互作用网络(RINS)提供了基于图的蛋白质相互作用网络的表示,从而对驱动蛋白质结构,功能和稳定性关系的因素提供了重要的见解。存在多种工具来执行RIN分析,考虑到不同类型的相互作用,输入(晶体结构,模拟轨迹,单蛋白或跨蛋白质的比较分析)以及格式,包括独立软件,Web服务器和Web应用程序应用程序界面(API)。尤其是,使用“ metarins”对蛋白质家族进行比较RIN分析的能力提供了一种有价值的工具,可以剖析蛋白质进化。反过来,这突出了热点,以避免(或目标)体外进化研究,提供了一个强大的框架,可以利用该框架为工程师新蛋白质。
1斐济国立大学电气和电子工程学院,斐济苏瓦2号2 2医学科学数学实验室,生物科学系,东京大学科学学院,东京大学,113-0033,日本113-0033,日本3,医学科学数学实验室,计算生物学和医学科学学院,研究生科学,研究生,科学研究生,纽约市。 0033,日本4医学科学数学实验室,Riken综合医学科学中心,横滨,230-0045,日本5日本5综合和智能系统研究所,格里菲斯大学,内森,布里斯班,QLD,QLD,4111,澳大利亚 *,应向他们致辞。电子邮件地址:rs:sharmaronesh@yahoo.com tt:tsunoda@bs.s.s.u-tokyo.ac.ac.jp as:alok.fj@gmail.com
使用大环氧化物氧化物和CO 2合成了三个分子量的分子量碳酸盐),并使用大环苯二氧化二层二层型催化剂合成,并通过常规纯化程序纯化。与使用Salen Metal催化剂合成的分子量相似的聚(环己烯碳酸盐)相比,观察到大约100℃的热稳定性降低。这种降低源于二脂催化剂的痕迹,该催化剂能够促进聚(环己烯碳酸苯甲酸酯)对CO 2和氧化氧化物的解聚,与常规的逆向机制相比,该机制可导致环境碳酸盐。可以通过更改残留的二脂催化剂的量或包含具有官能基团的物种来精确调整降解的发作,从而可以减少催化中心的可用性。因此,通过改变催化剂和周围化学环境的浓度来控制聚(环己烯碳酸盐)的热稳定性的可能性为将这些聚合物用作高级应用中利益的材料中的组成部分铺平了道路。
RNase T1 是一种来源于米曲霉 (Aspergillus oryzae) 的核糖核 酸内切酶,可特异性地在单链 RNA 的鸟嘌呤核糖核苷酸 (G) 后进行 切割,产生 3' 磷酸末端。 RNase T1 能够形成核苷 2' , 3'- 环磷酸中 间体,以切割 3'- 鸟苷残基与邻近核苷 5'-OH 基团之间的磷酸二酯键, 产生含末端 3'-GMP 的寡核苷酸和 3'-GMP 。
摘要如今,从自然资源中提取的纤维具有广泛的有前途的应用,包括在聚合物复合材料中用作增强材料的前景。在这种情况下,这项研究的目的是从橄榄树的不同部分(叶子,大小分支)中提取纤维,并使用高级设备来表征其物理化学,热和形态学特性。橄榄叶(OL)纤维显示出不对称的尺寸分布,与从小橄榄分支(OSS)和大橄榄分支(obs)中提取的纤维分布相比。OL纤维表现出64.1%的结晶度,低于OSS纤维,其结晶度为65.4%。热分析表明,与OL纤维相比,OBS和OSS纤维更稳定。获得的结果得出的结论是,橄榄树纤维可以适合用作增强材料,以开发用于各种轻质应用的聚合物复合材料。
1 复旦大学中山医院生命科学学院遗传工程国家重点实验室,上海,2 伊利诺伊大学医学院药理学系,美国伊利诺伊州芝加哥,3 伊利诺伊大学医学院医学系心脏病学分部,美国伊利诺伊州芝加哥,4 苏州大学苏州医学院第一附属医院心血管外科及心血管科学研究所、血液学协同创新中心、放射医学与防护国家重点实验室,苏州,5 东南大学生命科学与技术学院中大医院耳鼻咽喉头颈外科国家生物电子学重点实验室、生命健康高等研究院、江苏省生物医学研究高技术重点实验室,南京,6 南通大学神经再生协同创新中心,南通,7 四川省人民医院耳鼻咽喉头颈外科中国电子科技大学,成都,中国,8 上海工业微生物工程研究中心,上海,中国
环状细菌素 plantacyclin B21AG 的晶体结构和定点诱变揭示了对抗菌活性很重要的阳离子和芳香族残基 Mian-Chee Gor 1,2,+ , Ben Vezina 1,+ , Róisín M. McMahon 1 , Gordon J. King 3 , Santosh Panjikar 4,5 , Bernd HA Rehm 1,6 , Jennifer L. Martin 1,7 , Andrew T. Smith 1,8, * 1 格里菲斯大学格里菲斯药物发现研究所,Don Young Road,Nathan,昆士兰州,4111 澳大利亚。2 皇家墨尔本理工大学科学学院,Plenty Road,Bundoora,维多利亚州,3083 澳大利亚。3 昆士兰大学理学院,昆士兰州,澳大利亚。4 澳大利亚同步加速器,ANSTO Clayton,维多利亚州,澳大利亚。 5 莫纳什大学分子生物学和生物化学系,墨尔本,维多利亚州,3800 澳大利亚 6 格里菲斯大学细胞工厂和生物聚合物中心,格里菲斯药物发现研究所,内森,昆士兰州,4111 澳大利亚。 7 伍伦贡大学,诺斯菲尔兹大道,伍伦贡,新南威尔士州,2522 澳大利亚。 8 格里菲斯科学学院,格里菲斯大学,黄金海岸,昆士兰州,4222 澳大利亚。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2023年3月15日发布。 https://doi.org/10.1101/2023.03.15.532709 doi:biorxiv Preprint
对于具有生理相关的预测PK A值的可离子残基,并且数据在3D结构或2D残基相互作用网络中可视化。(b)以卡通和表面格式显示的SHP2的晶体结构(PDB ID:2SHP)。蛋白质酪氨酸磷酸酶(PTP)结构域以灰色为灰色的SH2域颜色为黄色。(c)灰色和SH2结构域的SHP2(PDB ID:2SHP)的结构(PDB ID:2SHP)在黄色的灰色和SH2结构域中的结构。通过在球体中显示的可离子网络预测管道中通过的残基。带有预测PK A位移(青色)簇的残基,具有可离子相互作用的人(洋红色)跨磷酸酶-SH2域相互作用界面的残基。(d)在47 SHP2结构(平均值±SD)上使用硅离子化网络预测管道鉴定出的青色残基的预测PK A S的表。(e)残基的残基相互作用网络具有预测的PK A Shifts(Cyan)及其可电离相互作用器(Magenta)。边缘的长度反映了库仑相互作用的强度,在PTP-SH2相互作用界面处,较强的库仑相互作用具有更短的边缘长度(F)SHP2结构的变焦。来自A和B的网络残基显示在棒子中。残基有预测的PK a在青色和洋红色中的电离相互作用者的变化。
图2:ESM2预测结构化和无序残基的适应性景观。(a)呈现了人类HP1α蛋白(Uniprot ID:P45973)中氨基酸的ESM2评分,残基的PLDDT得分低于70,以蓝色突出显示,以表示缺乏确定结构的区域。(b)在结构秩序不同程度的三个区域的健身景观的详细观点。在左侧,人类HP1α蛋白的Alphafold2预测的结构以卡通表示显示,其颜色为PLDDT分数。三个特定区域,代表柔性无序(残基75-85),保守无序(残基87-92)和折叠(残基120-130)段,分别用蓝色,橙色和红色突出显示,使用球形粘贴样式。右侧的面板描绘了每个区域中每个区域的ESM2 LLR预测。(c,d)PLDDT和ESM2分布分布的直方图(C)和无序(D)残基。轮廓线表示计算为 - log P(PLDDT,ESM2)的自由能水平,其中P是基于其PLDDT和ESM2分数的残基的概率密度。轮廓以0.5个单位间隔间隔,以区分不同密度的区域。