传统的增长会计方法论发现,传统的物理生产变量(例如资本和劳动力)仅贡献了30%-40%的产出增长。从中,很明显,其他非物理因素,例如教育,研发,知识,学习,技术进步和管理才能,占产出的大部分增加。许多研究在土耳其的实证研究中产生了类似的发现。结果,土耳其最重要的主题之一一直是确定产出的驱动因素。劳动力,资本和全因素生产率是大多数生长来源实证研究(TFP)的三个主要要素。残差或总因子生产率计算为输出生长和因子输入增长之间的差异。使用经典的增长会计方法在模型中定义残差的数量,换句话说,它取决于我们无法解释的变量的贡献的大小。如果残差超过对产出增长的资本和劳动力贡献的总和,则产出的大部分增长仍无法解释。Solow在1950年代建立了传统的增长会计方法,Jorgenson和Griliches在1960年代开发了扩展版本。
摘要 — 为了实现长期自主导航中稳健、无漂移的姿态估计,我们在本文中提出了一种将全局位置信息与视觉和惯性测量融合在一起的方法,该方法是基于紧耦合非线性优化的估计器。与以前的松散耦合研究不同,使用紧耦合方法可以利用所有测量之间的相关性。通过最小化包括视觉重新投影误差、相对惯性误差和全局位置残差的成本函数来估计最新系统状态的滑动窗口。我们使用 IMU 预积分来制定惯性残差,并利用这种算法的结果来有效地计算全局位置残差。实验结果表明,所提出的方法实现了准确且全局一致的估计,优化计算成本的增加可以忽略不计。我们的方法始终优于松耦合融合方法。与室外无人机 (UAV) 飞行中的松耦合方法相比,平均位置误差降低了 50%,其中全局位置信息由嘈杂的 GPS 测量提供。据我们所知,这是第一项在基于优化的视觉惯性里程计算法中紧密融合全局位置测量的工作,利用 IMU 预积分方法定义全局位置因子。
在每种情况下的模拟中,允许 2000-3000 次迭代(每种情况大约需要 5 个计算机小时)。大多数情况没有实现完全收敛(如 FLOVENT 所定义,场残差持续减少到总通量的 0.5% 以下),而是稳定在振荡残差中,无法通过进一步计算、改变松弛因子或其他计算选项来减少。这种振荡不同点的解决方案略有不同,主要是在涡流的位置,但发现流动的总体趋势相似。这种现象被解释为代表模拟的流动的不稳定性质,并被接受为这样,而不是代码或数据错误的迹象。个别案例在这些振荡的最小值附近停止。
延长电子产品的使用寿命是可持续设计的一个主要问题。电力电子元件是我们日常服务使用中不断增长的一部分,从笔记本电脑充电器(10-100 W)、家用空调(1-10 kW)、太阳能发电厂(1-100 kW)到铁路电动汽车(1-100 MW)。由于设备体积与额定功率成正比,因此它们大大增加了电子垃圾的产生量。修复转换系统对设计师来说是一个挑战,即系统应该如何设计才能在多年内得到维护。此外,通过电子元件(或子系统)再利用引入循环经济意味着评估电力电子产品的剩余价值。本文首先从现有技术的角度介绍了残值评估,以定义电力电子元件应包括的相关参数(例如:平均故障间隔时间 - MTBF - 多因素函数、元件市场价格评级、内部残值关键材料、内含能量等),并提出了一种估算该值的方法。© 2022 作者。由 ELSEVIER B.V. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(https://creativecommons.org/licenses/by-nc-nd/4.0)由第 32 届 CIRP 设计会议科学委员会负责同行评审
图 2 顶部,3D FID-MRSI 重建代谢物体积,具有回顾性加速。完全采样采集(无加速)在 70 分钟内完成,加速因子对应于 k 空间欠采样并相应地减少采集时间(例如 3,24 分钟;6,12 分钟)。彩色图针对从 0 到第 95 个百分位数的每个代谢物范围单独缩放。底部,在所有加速因子下相对于未加速结果为每个代谢物图计算的归一化 RMSE 和 SSIM。显示了来自两个不同位置的样本光谱,它们随加速度(无、3、5)的变化很小。LCModel 拟合与拟合残差一起显示。左下方,整个大脑平均残差的 RMS 随加速度保持不变
摘要 — 为了实现长期自主导航中稳健、无漂移的位姿估计,我们在本文中提出了一种将全局位置信息与视觉和惯性测量融合在一起的紧耦合非线性优化估计器。与以前的松散耦合的工作不同,使用紧耦合方法可以利用所有测量之间的相关性。通过最小化包括视觉重新投影误差、相对惯性误差和全局位置残差的成本函数来估计最新系统状态的滑动窗口。我们使用 IMU 预积分来计算惯性残差,并利用该算法的结果有效地计算全局位置残差。实验结果表明,所提出的方法实现了准确且全局一致的估计,而优化计算成本的增加可以忽略不计。我们的方法始终优于松耦合的融合方法。与室外无人机 (UAV) 飞行中的松散耦合方法相比,平均位置误差减少了 50%,其中全局位置信息由嘈杂的 GPS 测量提供。据我们所知,这是首次在基于优化的视觉惯性里程计算法中紧密融合全局位置测量,利用 IMU 预积分方法定义全局位置因子。
许多人都同意,当一套负责产生人类智能的原理(即计算理论:Marr,1982)被发现时,心理科学就达到了它的目标。传统上,对此类原理的追求植根于对“理性”主体通常应如何表现的牢固先入之见(McCarthy,2007;Millroth 等人,2021;Minsky,2007)。虽然这种方法无疑是卓有成效的(例如,Anderson,2013 年;Chase 等人,1998 年;Marr,1982 年;Chater 和 Oaksford,1999 年),但人们一再争论说,对人类行为的理解仍然很少,因为没有投入足够的精力来研究个人的实际问题和目标,导致对可用于指导计算分析层面研究的规范理论做出过早的假设(Millroth 等人,2021 年;Minsky,1974 年;2007 年)。
高性能差压力发射器EJX110A具有单晶硅谐振传感器,适合测量液体,气或蒸汽流以及液位,密度和压力。ejx110a输出4至20 mA DC信号,与测得的不同压力相对应。其高度准确稳定的传感器还可以测量可以在积分指示器上显示的静压,也可以通过大脑或HART通信进行远程监测。其他关键功能包括快速响应,使用通信的远程设置,诊断和可选状态输出,以提高压力高/低警报。多感应技术提供了先进的诊断功能,以检测诸如冲动线阻滞或热量痕量破裂等异常。f oundation fieldbus和profibus pa协议类型也可用。除了菲尔德总括和profibus类型外,所有EJX系列模型都在其标准配置中,均被认证为符合SIL 2的安全要求。
这是我想进一步探索的一些概念的集合,我将看到他们带我去哪里。,这可能太冗长了,因为我会想到这个问题。如果您准时短暂,请随时跳过结束,因为那是我认为我对OP要求的答案的答案。我的重点是将分化和集成为符号操作。为了差异化,让我们考虑一个包括常数(可能是复杂的),$ x $的功能符号的$ e $ e $,并且在算术操作和组成下被关闭。我们可以添加更多功能符号,例如$ e^x $,$ \ ln(x)$或$ x^{ - 1} $,但我们假设我们知道如何为添加到$ e $的每个添加的衍生物找到它们的衍生物。仅使用常数和$ x $,我们将多项式作为设置$ e $。更大的选项将是基本功能。如果差异化被视为$ e $中符号内的操作,则根据定义,它的算法是算法,因为我们可以根据$ e $中任何功能 - 符号的衍生物,因为其涵盖了生成$ e $的操作的属性。挑战可能来自确定功能是否属于$ e $。我声称,至少集成与差异化(可能更难)一样困难,这对于多项式来说是显而易见的,但取决于所选的集合$ e $。现在,让我们考虑构建一个适合集成的域,类似于我们处理分化的方式。让我们称此功能符号$ i $的收集。它包含常数和$ x $,其中可能还有其他符号,例如$ e^x $或$ x^{ - 1} $,我们知道它们的积分。这是一个简单的事情。我们假设$ i $在某些操作下关闭:其元素的线性组合以及操作$ \ oplus $(乘以衍生物)和$ \ otimes $(特定的组成操作)。这为我们提供了一个合理的最小域来定义内部集成。在这样的$ i $中,集成成为使用这些操作编写的功能的算法。我声称,在这种情况下,如果我们假设$ i $包含常数,并且满足了三个条件之一,那么推导很简单,从而允许仅使用一个基本操作计算衍生物。可以将OP的问题转化为是否给定的$ E $,我们有一种算法来检查其元素是否是$ i $的一部分,还是使用其积分和某些操作已知的函数 - 符号。此功能取决于$ e $的性质及其可用功能符号。对于$ x $中的多项式,这种算法显然存在。我们不仅有一些情况,即某些$ e $的问题是不可确定的。感谢Richardson的定理,如果$ e $包含$ \ ln(2),\ pi,e^x,e^x,\ sin(x)$,并且还包括$ | x | $以及$ e $中没有原始功能的功能,则条件3可用于$ e $ $ e $的基本功能,以及$ | x | $ | x | $。要验证这种情况,我们可以使用$ e^{x^2} $。定理的有效性源于基本函数$ m(n,x)$的存在,每个自然数$ n $都与0或1相同,但是对于每个自然数$ n $,无论它是相同的0还是1。如果我们通过为每个原始添加符号来关闭$ e $,则此范围消失。给定这样的函数,如果我们可以在$ e $中确定集成,那么对于每个自然数$ n $,无论$ f_n(x):= e^{x^2} m(n,x)$是否可以集成。但是,这将使我们能够弄清楚$ m(n,x)$是0或1何时,因为$ f_n(x)$是可以集成的,当$ m(n,x)= 0 $而不是$ m(n,x)= 1 $时。因此,对于某些类$ e $,我们看到虽然派生是基本的(显示该功能属于$ e $),但集成是不可决定的。这已经表明集成比派生更难(依赖我们集成的函数类别的语句)。观察:上述$ e $集成的不确定性与在$ e $中具有函数符号无关,而没有原始函数 - 符号为$ e $。另一方面,这使得$ e $不是由有限的许多符号生成的,从而使确定何时用$ e $中的符号表示函数更为复杂。因此,对于这个大$ e $的原因,如果我们赋予了我们知道的功能,则可以计算其积分,因为我们假设输入为$ e $。问题仍然存在:$ e $可以比派生更难集成?
如图 2.1 (b) 所示,差分增益 (A d ) 定义为输出电压 (图 2.1 (a) 中的 V out ) 除以差分输入电压 (图 2.1 (b) 中的 Vi1 和 Vi2 )。除此之外,共模增益 (A CM ) 定义为输出电压 (图 2.1 (a) 中的 V out ) 除以共模输入电压 (图 2.1 (b) 中的 ViCM )。差分增益表示没有噪声扰动的理想信号增益。共模增益表示共模噪声对输出电压的贡献。