使用两个摄像机记录流动可视化的粒子,从而连续照亮整个测量体积。摄像机的照明时间被设置为最大可能值(约 1/帧速率),从而产生一系列图像,其中移动粒子创建复合段的连续路径。利用两个摄像机的粒子轨迹,重建三维粒子轨迹。为了改善弱对比度,从当前图像中减去参考图像,然后对图像进行滤波以抑制噪声,并用阈值算子进行分割。路径段是根据路径连续的事实来识别的,也就是说,每个后续段都必须准确地在前一个图像中同一段结束的位置找到。提取已识别线段的端点,并针对镜头和 CCD 芯片造成的失真校正线段的边缘像素坐标。一旦找不到所讨论路径的新段,就用三次样条函数来近似路径的中心线。根据应用于端点的极线条件确定两个摄像机的相应路径。找到两条对应路径后,在三维空间中逐点重建粒子轨迹。采用三维三次样条函数描述粒子轨迹。可以根据段长度和曝光时间计算出粒子速度。为了获得有关粒子轨迹形状的信息,需要额外的
此预印本的版权所有者此版本于 2024 年 11 月 1 日发布。;https://doi.org/10.1101/2024.07.17.24310568 doi: medRxiv preprint
摘要 2 型强直性肌营养不良 (DM2) 是由 CNBP 基因中的 CCTG 重复扩增引起的,该扩增包含 75 至 >11,000 个单位,具有广泛的嵌合性,因此对完全扩增的等位基因进行测序具有挑战性。为了克服这些限制,我们使用无 PCR 的 Cas9 介导纳米孔测序在 9 名 DM2 患者的单核苷酸水平上表征了 CNBP 重复扩增。使用此策略可以精确评估正常和扩增等位基因的长度,与传统方法一致,并揭示了嵌合性的程度。我们还对整个 ~50 kbp 的扩增进行了测序,这在 DM2 或任何其他重复扩增疾病中都是前所未有的。我们的方法精确地计算了重复次数并确定了短中断和不间断等位基因的重复模式。有趣的是,在扩增的等位基因中,只有两个 DM2 样本具有预期的纯 CCTG 重复模式,而其他七个样本在 3 ' 端也呈现出 TCTG 阻断,这在 DM2 患者中以前从未报道过,但在此通过正交方法得到证实。所展示的方法同时确定了重复长度、结构/基序和体细胞嵌合程度,有望改善 DM2 的分子诊断并实现更准确的基因型-表型相关性,从而在临床试验中更好地对 DM2 患者进行分层。
2019 冠状病毒病 (COVID-19) 疫苗表现出了出色的安全性。最常见的短期副作用是注射部位反应、发烧、疲劳和头痛,而严重不良反应的报道很少 [1]。然而,自大规模接种疫苗以来,已报告了几种免疫介导反应(包括心肌炎和新发或复发性肾小球肾炎 [GN])[1]。据报道,COVID-19 疫苗还可诱导 T 细胞活化 [2]。在这方面,接种 COVID-19 疫苗后发生肾脏疾病可能与其对病毒信使 RNA (mRNA) 产生的 T 细胞介导的免疫反应有关,而这种免疫反应可引发足细胞损伤 [2]。在此,我们报告了一例局灶性节段性肾小球硬化 (FSGS) 病例,该病例在接种第一剂辉瑞-BioNTech COVID-19 疫苗后出现节段性小叶塌陷和足细胞增生,模仿 FSGS 的细胞病变。
摘要,监督机器学习方法从生物学家的惯性测量中识别行为模式已成为行为生态学的标准工具。几种设计选择可以影响识别行为模式的准确性。这样的选择是包含或排除在机器学习模型培训数据中包含不仅是单个行为(混合段)组成的细分。目前,常见的实践是在模型培训期间忽略此类段。在本文中,我们检验了以下假设:在模型训练中包括混合段将提高准确性,因为该模型在测试数据中识别它们的表现更好。我们使用在四个加速度计数据数据集上进行了一系列数据模拟,并从四个研究物种(Damaraland mole鼠,Meerkats,Meerkats,Olive Baboons,Polar Bears)获得了一系列数据模拟。结果表明,当大量测试数据是混合行为段(高于10%)时,包括机器学习模型培训中的混合段可提高分类的准确性。这些结果在四个研究物种中是一致的,并且在混合段内的片段长度,样本量和混合物程度的变化稳健。但是,与未经混合段的训练的模型相比,在某些情况下(尤其是在狒狒中)模型(尤其是在狒狒)模型中显示出仅包含单个行为(纯)段的测试数据的准确性降低。在这种情况下,应避免将混合段过量包含在培训数据中。基于这些结果,我们建议当预期分类模型处理大量混合行为细分(> 10%)时,将它们包括在模型培训中是有益的,否则,这是不必要的,但也不有害。当时有一个基础假设培训数据包含的混合段率要比要分类的实际(未观察到的)数据更高 - 可能发生这种情况,尤其是在收集训练数据的情况下,并用于将数据分类并从野外分类。关键字身体加速器,生物遗传,机器学习,动物行为
摘要自发现C9ORF72重复扩张是额颞痴呆(FTD)和肌萎缩性侧面硬化症的最常见遗传原因,它越来越多地与更广泛的表型相关,包括其他类型的痴呆,运动障碍,运动障碍,精神病,精神症状和缓慢的进步FTD。鉴于即将进行的临床试验,对C9ORF72相关疾病患者的迅速识别至关重要。与C9orf72重复扩张相关的引人注目的临床异质性在很大程度上无法解释。与其他重复扩张障碍相比,重复长度对表型的影响的证据尚无定论。患有C9ORF72相关疾病的患者通常具有很长的重复扩张,其中包含数百至数千个GGGGCC重复,但较小的扩张也可能具有临床意义。重复扩展导致神经变性的确切阈值未知,实验室之间的不一致的截止值为遗传咨询带来挑战。精确且大规模的重复扩展测量受到技术困难的尺寸,并在整个组织内和组织内部的重复长度变化。新颖的长阅读测序方法产生了有希望的结果,并开放了途径,以进一步研究这种令人着迷的重复扩展,阐明其长度,纯度和甲基化模式是否可能调节C9ORF72-相关疾病的临床特征。
用于流动可视化的粒子由两个摄像机记录,从而整个测量体积被连续照亮。将摄像机的照明时间设置为最大可能值(约 1/帧速率),从而生成一系列图像,其中移动粒子创建复合段的连续路径。利用来自两个摄像机的粒子轨迹,重建三维粒子轨迹。为了改善弱对比度,从当前图像中减去参考图像,然后对图像进行滤波以抑制噪声,并用阈值算子进行分割。路径段是根据路径连续的事实来识别的,即每个后续段必须准确地位于前一个图像中同一段结束的位置。提取已识别线段的端点,并针对镜头和 CCD 芯片造成的失真校正线段的边缘像素坐标。一旦找不到所讨论路径的新段,就用三次样条函数来近似路径的中心线。根据应用于端点的极线条件确定两个摄像机的相应路径。找到两条对应路径后,在三维空间中逐点重建粒子轨迹。使用三维三次样条函数描述粒子轨迹。根据片段长度和曝光时间可以计算出粒子速度。为了获取有关粒子轨迹形状的信息,附加
图1。奖励喷口位置的变化引起的力量在不同方向上施加了力量,而不会改变奖励预测。(a)。连续测量在头部固定装置中受约束的小鼠中向后和向后的劳累的连续测量。(B-C)带有不同喷口位置的Pavlovian调节任务设计。(D-E)双向力的劳累取决于相同会话内的吐口位置。小鼠表现出与喷口位置对齐的方向(n = 12)的力量。(f)小鼠在不同方向上施加力作为条件和无条件的响应(左:CR,配对t检验,t = 9.473,p <0.0001;右:ur rign:ur,ur,成对t检验,t = 9.556,p <0.0001)。(G-H)在喷口位置变化时一致的舔行为。(i)左,与条件响应相同的舔率(配对t检验,t = 1.758,p = 0.107)。右,与无条件响应的舔速度相同(配对t检验,t = 0.0624,p = 0.951)。
