我们产品中的许多产品都含有与森林砍伐和改造有关的原材料,这些原材料使宝贵的生态系统面临退化的风险,并损害了土著人民或当地社区的权利。为了减轻这些风险,我们的目标是从社会和环境可持续的来源采购高风险原材料。我们致力于在我们的供应链中促进这些原材料的透明度和可追溯性——了解这些原材料的来源意味着我们可以确定它们来自森林砍伐或改造地区的风险。通过采取务实的方法解决森林砍伐和改造问题,Lidl 可以为保护气候、节约资源、尊重生物多样性和公平行事等战略重点领域做出积极贡献。
美国重申支持到 2030 年制止和扭转全球毁林现象(包括由商品生产引起的毁林现象)的共同目标。美国认识到,要实现这一目标,需要全世界采取多种多样、相互补充的努力和举措,包括需求方措施。美国已制定了一项政策框架,以指导潜在的需求方措施,减少与毁林有关的商品及其衍生产品的进口,初期重点是农产品。通过这一政策框架,美国概述了旨在最大限度提高政策效力以实现我们目标的方法。针对这一初期重点的政策框架包括以下要素,以指导潜在的美国需求方措施,减少与农产品生产有关的毁林现象:
除了定义良好做法外,该框架还有助于标准化和协调商品买家、投资者和民间社会评估企业绩效的方式。为此,AFi 与领先的企业披露和评估举措进行了协调,以增加一致性并减少其工具和方法之间的数据差距。此次合作的成果是《无毁林供应链进展评估通用方法》,该方法也于 2019 年首次发布。该方法提供了一套推荐指标,用于评估与消除商品供应链中的毁林、改造和相关侵犯人权行为有关的公司政策、行动和绩效。
针对未作出承诺的国家(即目前非附件一国家)的议定书。本文通过总结发展中国家估算毁林所致排放量的技术能力和关键制约因素,为这些政策讨论做出了贡献。减少毁林所致排放量的政策实施取决于对国家层面避免排放量的准确和精确估计(Santilli 等人,2005 年)。必须估计几个组成部分:(1)国家层面的森林覆盖率损失,(2)基准期的初始碳储量及其因毁林和退化引起的变化,以及(3)从定义的“基线”或基准期避免的排放量。遥感与地面测量相结合在确定森林覆盖率损失方面发挥着关键作用。自 20 世纪 90 年代初以来,技术能力不断提高,目前,在国家层面建立可操作的森林监测系统已成为大多数发展中国家的可行目标( Mollicone 等人,2003 年;DeFries 等人,2005 年)。使用机载传感器远程感知森林碳储量的新技术和方法的开发也在取得进展(例如Drake 等人,2003 年;Brown 等人,2005 年)。虽然后者目前成本过高,无法覆盖大面积区域,但这些方法可用于推断更大区域的碳储量估计值。森林的多种土地利用方式会导致碳储量损失和二氧化碳排放,如果在清理过程中燃烧生物质,则会排放额外的非二氧化碳气体(Penman 等人,2003a)。毁林,定义为从林地转变为非林地(考虑到《联合国气候变化框架公约》对森林的定义),最容易监测,并导致单位毁林面积的碳储量损失相对较大(图1)。不可持续的木材生产、过度采伐燃料木和森林碎片边缘的火灾等森林退化行为比毁林更难观察到,但会对排放产生重大影响。森林退化也可能是毁林的前兆。另一方面,森林中的一些土地使用实践,例如管理伐木和轮耕,导致了转移
英国环境、食品和农村事务部 (Defra) 正在就《环境法》中尽职调查条款的实施征求意见。其目的是: 提高供应链的可持续性。 保护全球森林和生态系统。 解决英国供应链中的非法毁林问题。 禁止大型企业使用在非法占用或使用的土地上生产的关键森林风险商品*。 要求企业对其供应链进行尽职调查 要求企业每年发布尽职调查报告。*森林风险商品是过度使用时可能导致大规模森林毁林的原材料。
议定书》适用于没有承诺的国家,即目前非附件一国家。本文通过总结发展中国家估算森林砍伐所致排放量的技术能力和主要制约因素,为这些政策讨论做出了贡献。减少森林砍伐所致排放的政策的实施取决于对国家层面避免的排放量的准确和精确估计( Santilli 等人,2005 年)。必须估算几个组成部分:(1)国家层面的森林覆盖率损失,(2)基准期的初始碳储量及其因森林砍伐和退化引起的变化,以及(3)相对于定义的“基线”或基准期避免的排放量。遥感与地面测量相结合在确定森林覆盖率损失方面发挥着关键作用。自 1990 年代初以来,技术能力已经取得了进步,对于大多数发展中国家来说,在国家层面建立可操作的森林监测系统现在是一个可行的目标( Mollicone 等人,2003 年;DeFries 等人,2005 年)。使用机载传感器远程感测森林碳储量的新技术和新方法的开发也在取得进展(例如 Drake 等人,2003 年;Brown 等人,2005 年)。尽管后者目前成本过高,无法覆盖大面积区域,但这些方法可用于推断更大区域的碳储量估算值。森林的多种土地使用方式会导致碳储量损失和二氧化碳排放,如果在砍伐过程中燃烧生物质,则会排放额外的非二氧化碳气体(Penman 等人,2003 年 a)。毁林被定义为从林地转变为非林地(考虑到《联合国气候变化框架公约》对森林的定义),这是最容易监测的,会导致单位毁林面积的碳储量损失相对较大(图 1)。不可持续的木材生产、过度采伐燃料木和森林碎片边缘的火灾等森林退化行为比毁林更不容易观察到,但会大大增加排放。森林退化也可能是毁林的前兆。另一方面,一些森林土地使用实践,例如管理伐木和轮耕,导致土地利用方式的转变。
议定书》适用于没有承诺的国家,即目前非附件一国家。本文通过总结发展中国家估算森林砍伐所致排放量的技术能力和主要制约因素,为这些政策讨论做出了贡献。减少森林砍伐所致排放的政策的实施取决于对国家层面避免的排放量的准确和精确估计( Santilli 等人,2005 年)。必须估算几个组成部分:(1)国家层面的森林覆盖率损失,(2)基准期的初始碳储量及其因森林砍伐和退化引起的变化,以及(3)相对于定义的“基线”或基准期避免的排放量。遥感与地面测量相结合在确定森林覆盖率损失方面发挥着关键作用。自 1990 年代初以来,技术能力已经取得了进步,对于大多数发展中国家来说,在国家层面建立可操作的森林监测系统现在是一个可行的目标( Mollicone 等人,2003 年;DeFries 等人,2005 年)。使用机载传感器远程感测森林碳储量的新技术和新方法的开发也在取得进展(例如 Drake 等人,2003 年;Brown 等人,2005 年)。尽管后者目前成本过高,无法覆盖大面积区域,但这些方法可用于推断更大区域的碳储量估算值。森林的多种土地使用方式会导致碳储量损失和二氧化碳排放,如果在砍伐过程中燃烧生物质,则会排放额外的非二氧化碳气体(Penman 等人,2003 年 a)。毁林被定义为从林地转变为非林地(考虑到《联合国气候变化框架公约》对森林的定义),这是最容易监测的,会导致单位毁林面积的碳储量损失相对较大(图 1)。不可持续的木材生产、过度采伐燃料木和森林碎片边缘的火灾等森林退化行为比毁林更不容易观察到,但会大大增加排放。森林退化也可能是毁林的前兆。另一方面,一些森林土地使用实践,例如管理伐木和轮耕,导致土地利用方式的转变。
议定书》适用于没有承诺的国家,即目前非附件一国家。本文通过总结发展中国家估算森林砍伐所致排放量的技术能力和主要制约因素,为这些政策讨论做出了贡献。减少森林砍伐所致排放的政策的实施取决于对国家层面避免的排放量的准确和精确估计( Santilli 等人,2005 年)。必须估算几个组成部分:(1)国家层面的森林覆盖率损失,(2)基准期的初始碳储量及其因森林砍伐和退化引起的变化,以及(3)相对于定义的“基线”或基准期避免的排放量。遥感与地面测量相结合在确定森林覆盖率损失方面发挥着关键作用。自 1990 年代初以来,技术能力已经取得了进步,对于大多数发展中国家来说,在国家层面建立可操作的森林监测系统现在是一个可行的目标( Mollicone 等人,2003 年;DeFries 等人,2005 年)。使用机载传感器远程感测森林碳储量的新技术和新方法的开发也在取得进展(例如 Drake 等人,2003 年;Brown 等人,2005 年)。尽管后者目前成本过高,无法覆盖大面积区域,但这些方法可用于推断更大区域的碳储量估算值。森林的多种土地使用方式会导致碳储量损失和二氧化碳排放,如果在砍伐过程中燃烧生物质,则会排放额外的非二氧化碳气体(Penman 等人,2003 年 a)。毁林被定义为从林地转变为非林地(考虑到《联合国气候变化框架公约》对森林的定义),这是最容易监测的,会导致单位毁林面积的碳储量损失相对较大(图 1)。不可持续的木材生产、过度采伐燃料木和森林碎片边缘的火灾等森林退化行为比毁林更不容易观察到,但会大大增加排放。森林退化也可能是毁林的前兆。另一方面,一些森林土地使用实践,例如管理伐木和轮耕,导致土地利用方式的转变。
通过减少毁林和退化造成的排放 (REDD) 来缓解气候变化的努力取决于对大片地理区域内热带森林碳储量和排放的测绘和监测。通过综合使用卫星成像、机载光探测和测距以及实地样地,我们绘制了秘鲁亚马逊 430 万公顷土地上 0.1 公顷分辨率的地上碳储量和排放图,该面积是哥斯达黎加所有森林面积的两倍,以揭示森林碳密度的决定因素并证明绘制碳排放图以进行 REDD 的可行性。我们发现了以前未知的基于地质基质和森林类型的多种尺度碳储量变化。从 1999 年到 2009 年,土地利用产生的排放占整个区域现有碳总量的 1.1%。森林退化(例如选择性砍伐造成的)使区域碳排放量比毁林本身增加了 47%,而次生林再生抵消了总排放量的 18%。超高分辨率监测减少了 REDD 计划碳排放的不确定性,同时揭示了森林碳储存的基本环境控制及其与土地利用变化的相互作用。