电源 V/ph/Hz 400/3+N/50 400/3+N/50 400/3+N/50 400/3+N/50 400/3+N/50 400/3/50 400/3/50 400/3/50 性能 仅制冷(毛值) 制冷能力 (1) kW 43,9 52,9 63,1 72,1 83,8 101 120 129 总输入功率 (1) kW 15,7 18,8 21,4 25,0 29,2 35,2 41,9 46,8 EER (1) kW/kW 2,80 2,81 2,95 2,88 2,87 2,87 2,86 2,76 仅制冷 (EN14511 值) 制冷能力 (1)(2) kW 43,6 52,6 62,7 71,7 83,4 100 119 129 EER (1)(2) kW/kW 2,73 2,75 2,88 2,82 2,82 2,82 2,80 2,72 制冷能效等级 C C C C C C C C 能源效率 制冷季节效率 (REG.EU 2016/2281) 环境制冷 Prated,c (10) kW 43,6 52,6 62,7 71,7 83,4 100 119 129 SEER (10)(11) 4,15 4,11 4,13 4,18 4,23 4,36 4,32 4,30 性能ɳs (10)(12) % 163 161 162 164 166 171 170 169 交换器热交换器制冷用户侧水流量 (1) l/s 2,10 2,53 3,02 3,45 4,01 4,82 5,73 6,18 压降 (1) kPa 37,2 41,2 42,3 39,4 35,0 36,2 42,9 38,9 制冷剂回路压缩机数量。编号 1 2 2 2 2 2 2 2 编号回路编号 1 1 1 1 1 1 1 1 制冷剂充注量 kg 7,00 7,20 8,90 9,40 9,50 12,5 12,9 13,5 噪音等级 声压 (5) dB(A) 51 52 53 53 54 55 57 57 制冷时声功率等级 (6)(7) dB(A) 83 84 85 85 86 87 89 89 尺寸和重量 长度 (9) mm 2000 2000 2625 2625 2625 3250 3250 3250 宽度 (9) mm 1350 1350 1350 1350 1350 1350 1350 1350 高度(9)mm 2070 2070 2070 2070 2070 2170 2170 2170 工作重量(9)kg 600 660 750 780 810 1060 1070 1080
与传统技术相比,热除冰和融雪方法在控制交通基础设施表面冬季状况方面具有多种优势。这些包括自动控制安全的表面条件、避免化学物质及其对环境的影响以及延长基础设施的使用寿命。水力传热系统可以利用夏季收集的太阳能和地热交换的季节性热能储存。将这些可再生资源与能源储存结合起来可以节省一次能源。2021 年 6 月,国际能源署 (IEA) 启动了一个项目,旨在利用地面热能源为交通基础设施的表面除冰。本文首次概述了项目目标和方法。© 2022 作者。由 ELSEVIER BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(https://creativecommons.org/licenses/by-nc-nd/4.0)由交通研究领域 (TRA) 会议科学委员会负责同行评审 关键词:除冰;融雪系统;地源;基础设施
脱颖而出的背景:免疫学因素是复发妊娠丧失(RPL)的主要原因(RPL)和诱导母亲耐受性的耐受性是对这种RPL原因的主要治疗方法,但是这种方法的效果是不确定的,需要多种剂量和/或干预措施。这项研究的目的是研究转化生长因子-β1(TGF-β1)的单一施用是否可以改善RPL小鼠的妊娠结局,以及通过TGF-β1驱动免疫耐受性分子吲哚氨基氨基氨基氨基氨酸2,3-二氧氧化物(IDO)的TGF-β1是否导致改善。材料和方法:在这项实验研究中,将40个RPL模型小鼠平均分为一个对照组,该对照组接受了0.01 m磷酸盐缓冲盐水(PBS)和一个治疗组,该治疗组通过尾静脉注射接收了含有2、20和200 ng/ml TGF-β1的PBS。在怀孕的13.5天后处死小鼠,并确定胚胎的探索率。使用蛋白质印迹和免疫组织化学技术在胎盘中检测到IDO,TGF-β1和TGF-β3的表达。结果:在RPL小鼠的胎盘组织中,IDO的表达与TGF-β1正相关(r = 0.591,p <0.001)。在所有治疗组中,胚胎吸收率显着低于对照组,并且在所有治疗组的胎盘组织中IDO的表达显着高于对照组。TGF-β1的表达从治疗组的2、20至200 ng/ml逐渐增加,外源性TGF-β1的浓度与治疗组中胎盘组织中TGF-β1的表达呈正相关(r = 0.372,p = 0.018)。结论:外源性TGF-β1改善了RPL小鼠的妊娠结局,并且可能的治疗性机械性是外源性TGF-β1诱导内源性TGF-β1和IDO的持续表达,这是由于相互诱导的另一个人的表达。该实验可以为RPL患者的未来治疗提供一个新的方向和想法。
A2660 DISPLAY PACK INC 1340 MONROE NW GRAND RAPIDS 49505 KENT Other A2677 AMERIKAM 1337 JUDD AVE SW GRAND RAPIDS 49509 KENT Other A2722 EXPERT COATING CO INC. 2855 MARLIN COURT NW GRAND RAPIDS 49534 KENT Other PTI A2725 GEAR RESEARCH INC 4329 EASTERN AVE GRAND RAPIDS 49508 KENT Other A2809 Mold Masters Company 1455 Imlay City Road Lapeer 48446 Lapeer其他PTI A2849 Wacker Chemical Corp 3301 Sutton Rd Adrian 49221 Lenawee Lenawee其他PTI A2851 Anderson Development Company
STFC(ISIS)获得了英国国际科学伙伴基金 2 的资助,以支持马来西亚使用 ISIS 直至 2026 年 3 月。该奖项将支付 ISIS 的光束时间费用,并将支持马来西亚研究人员前往 ISIS 进行实验的旅行、食宿费用。
摘要人类母乳由许多对婴儿营养和新生儿微生物组和免疫系统启动至关重要的经过良好研究的生物活性成分组成。了解这些成分使我们对婴儿的健康和福祉至关重要。围绕糖胺聚糖(GAG)的研究,以前侧重于内源性的糖胺聚糖(GAG)。但是,最近的努力已转向了解人类母乳中的插科打s。插科打的结构复杂性使检测和分析变得复杂,因此研究时间很耗时,并且仅限于碳水化合物分析中经历的高度专业团队。在母乳中,插科打s存在于四种形式的不同数量。硫酸软骨素,肝素/肝素硫酸软骨,硫酸甲酯和透明质酸,被认为表现出类似于其他生物活性成分,可疑在病原体防御和有益的肠道细菌的增殖中作用。硫酸软骨素和肝素最丰富,预计对婴儿健康有最大的影响。他们对泌乳的浓度下降进一步表明了它们在早期生命中的作用和潜在的重要性。
您所在农场和您所在地区流行的疾病。 育种者的免疫状态和母源抗体水平(由血清学或其他诊断程序确定)。 在整个生长期内为鸟类/鸡群提供所需免疫水平的必要性。由于生产周期较长,种鸡和商业蛋鸡需要比肉鸡更高的免疫水平,以抵御持续的田间挑战。此外,与育种者一样,要保持可接受的产蛋量、孵化率和母源抗体转移标准。 疫苗的经济性。疫苗、劳动力和设备的成本能否抵消疾病成本?这样做有利可图吗? 鸡群的总体健康状况和当地疾病模式。 只给健康的鸡接种疫苗,避免给在接种疫苗时受到应激或患病的鸡群接种疫苗。 考虑农场当前的管理实践将决定所需的疫苗接种途径、方法和接种频率。 应考虑接种疫苗的其他原因:
近年来,随着新兴国家工业化进程加快、经济发展迅速,矿产资源需求不断增加,矿产资源可持续供给危机感不断增强,资源民族主义思潮回潮。引发资源供给结构变化,正处于重大变革时期。随着陆地资源日益枯竭,深海资源的勘探和采集研究正在快速进展。在日本的专属经济区和大陆架,已发现许多深海矿产资源潜力区,如含有金属和稀有元素的黑子型海底热液矿床、富钴结壳等。据估计,日本拥有世界最大的黑子型海底热液矿床潜在资源量,拥有仅次于美国的世界第二大富钴结壳潜在资源量。然而,如何将潜在有前景的海域缩小到具有资源吸引力的海域,这一方法尚未完全确立。此外,由于深海海底采矿技术刚刚起步,矿藏的勘探和开采活动仍处于起步阶段。因此,需要开发新的勘探技术并开发有效的采矿技术。此外,作为世界第三大经济体,日本强劲的工业活动和丰富的生活方式得益于其丰富的能源和资源储备,包括石油、天然气、铜和镍。换句话说,日本是世界上最大的能源和资源消费国之一。然而,日本自身的能源和资源并不多,目前大部分依赖从其他国家进口。此外,近年来,在亚洲经济高速增长的背景下,全球对这些资源和能源的需求急剧增加,日本确保稳定供应的难度加大。尤其是日本的石油、天然气、铜、镍等矿产资源几乎100%依赖海外,因此,海外资源竞争加剧、产地冲突、甚至经济形势的变化,供需环境的变化引起需求波动,使得资源价格长期呈上涨趋势,为资源价格波动创造了条件。随着人口向城市集中、老龄化导致的生活方式改变等原因,电气化不断推进,能源需求不断扩大,确保能源和资源对于改善人们的生活至关重要。因此,开发自己的海洋资源对日本来说极其重要。但对深海采矿车辆的实时监控研究较少,导致高效深海采矿变得困难。常规深海探测方法包括大地测量卫星遥感技术、船载声纳技术、自主水下机器人(AUV)巡航成像技术等,但这些方法难以实现实时探测,且存在易被篡改等问题。受环境影响较大,准确率较低。可见光成像系统的引入对于准确定位广阔海底的资源并有效收集至关重要。为此,我们开展了研究,利用先进的人工智能技术来克服这些问题。
图1 RNA干扰:将miRNA基因转录为原代miRNA(pri-miRNA),该基因由Drosha进一步处理以形成前miRNA。Exportin-5将前MIRNA转移到细胞质中,如果将其处理为成熟的miRNA。siRNA可以通过化学合成直接获得,并在载体或化学修饰的帮助下可以通过内吞作用到达细胞质。在细胞质中,成熟miRNA或siRNA的引导(反义)将组装到RNA诱导的沉默复合物(RISC)中。乘客(感官)链将被丢弃。成熟的RISC将通过与引导链配对找到目标mRNA序列。少于7个互补碱(种子区域)足以用于miRNA介导的RNAi,而siRNA诱导的沉默通常需要完全互补性。取决于触发分子(siRNA或miRNA),由于mRNA降解或转移到P体中,靶基因的翻译可能会被抑制。mRNA疗法:一旦通过适当的递送方法引入在细胞质中,经过改良的外源mRNA可以劫持细胞的核糖体,以转化为功能性蛋白质