每年应接种哪些疫苗以保持母牛/小牛群的健康?以下基本指导原则旨在帮助回答这个问题,但使用哪些产品以及何时接种这些产品的细节最好由生产者与其兽医共同决定。每个农场在疾病风险和其他挑战方面都有所不同,包括饲养牛所需的劳动力和设施。您的兽医具备相关知识和技能,可确定最适合您独特情况的方案。在制定或更改任何健康方案之前,请务必咨询您的兽医。请记住:“接种疫苗”(用注射器抽取疫苗并注射到动物体内)不同于“免疫”(动物产生免疫反应),并且即使在最好的情况下,“接种疫苗 + 免疫”也永远不会达到 100% 的感染保护效果。必须正确处理疫苗(适当混合、合适的温度)并保持牛的健康状况(低压力环境、良好的营养水平、满足微量矿物质需求、存在的寄生虫),以便从疫苗中获得最大程度的保护。
• 益生菌:小牛肠道健康,抑制病原体 • 乳球菌 = 乳酸菌(奶酪、酸奶) • 生物多样性越高,IgG 吸收越好 • 奶牛健康状况(疫苗接种) 特异性 IgG
◼Chapinal等人,2011年; Huzzey等,2011; Ospina等,2010a,2010c; Duffield等,2009; Leblanc等,2005
要求:1)财政年度财务报表(分配给母牛-小牛企业的期初和期末资产负债表和收入或损益表);2)农场或牧场折旧计划;3)财政年度 IRS 税收计划。SPA 软件和支持材料有助于组织和报告财务信息。要计算生产绩效指标,生产者必须拥有小牛断奶的财政年度或税收年度的其他数据:1)IRS 税收和折旧计划;2)贷款支付计划;3)为业务分析和贷方准备的财务报表;4)牛存栏和饲料使用情况;5)生产记录。
随后重新提出的开发可能会持续在支气管中,尤其是在一个放牧季节之前。它们比其他round虫物种载体更重要,因为它们将导致牧场污染,而在其他动物中引起疾病所需的L 3剂量则很低。当前的建模研究预测,在英国的南部和东部,肺虫传播的条件可能不太适合,但在北部和西部仍然相似。这可能表现为南部和东部疾病的较低水平,但是随后的免疫力下降可能会增加某些群的脆弱性。
结果:从怀孕生殖道(污染控制)的外表面培养了87种独特的细菌,并从妊娠组织培养的12种细菌物种。10头牛中有6个(60%)在怀孕子宫内的至少一个位置表现出细菌生长。对于元学结果(16S rRNA基因测序),鉴定出低靶向微生物生物量。对检测到的扩增子序列变体(ASV)的分析表明,有:(1)属在外表面和怀孕子宫内都普遍存在; (2)在外表面上盛行但未检测到的属,或者在怀孕子宫内未被检测到非常低的患病率; (3)未检测到的属或在外表面患病率较低但在怀孕子宫内的患病率相对较高。
Rangeland肉牛系统的营养管理优先于产犊时最佳的身体状况评分,以提高生育能力和生殖成功。然而,这种重点通常会在产犊前忽略短期饮食效果,这可能导致新生儿犊牛的不良后果。本综述探讨了周围时期牛肉营养不良的影响对初乳产生,泌乳发作和被动免疫转移到小牛的影响。此外,它讨论了这种营养不良对后代的长期影响。通过了解营养干预措施如何影响从妊娠到泌乳的过渡,可以在干旱的热带环境中增强小腿健康和生存。通常发生的短期饮食限制,尤其是蛋白质的限制,可能会破坏激素平衡,从而导致初乳量和质量减少,阻碍小牛的生长并增加死亡率风险。此外,在此期间的饮食限制会影响关键的生理过程,例如乳腺血液流量和胎儿小脑发育。审查探讨了这些约束如何影响初乳的产生和新生儿犊牛的免疫球蛋白吸收。此外,它突出了解决其他常见的营养定义(例如磷和水)的重要性,并研究了补充微生物产物以增强瘤胃功能并保护母牛免受影响不足的潜在利益。最终,解决怀孕期间的营养不良对于防止对后代表现的负面影响至关重要,包括改变car体成分和肌肉大理石花纹。因此,通过使用昂贵的遗传学来旨在使尸体中出色的肌肉大理石花纹的牛生产者应优先考虑加强晚期孕妇的营养计划。总而言之,在周围时期营养不良时期对初乳生产,被动免疫转移和整体小牛健康的影响,对于开发有效的营养干预措施至关重要,从而改善了乳头牛牛牛牛牛牛牛牛的整体养分型营养干预措施。
IBR 会导致卵巢发炎,干扰维持妊娠所必需的激素分泌。母牛在配种时接触 IBR 会导致早期胚胎死亡。含有 MLV IBR 的疫苗也会导致卵巢发炎,阻止维持妊娠所必需的卵泡发育。当这些牛同时配种时,MLV IBR 存在于未接种过疫苗的动物体内将防止受孕失败。接种 MLV 疫苗 30 天后再配种这些动物。接种疫苗后,动物的免疫记忆就会启动,卵巢上的这些影响将不再可见;随后,这条 30 天规则将不再适用。
这些实验的目的是研究使用不同激素治疗的 7 天孕酮 (P4) 固定时间人工授精 (FTAI) 方案的 Bos indicus 肉牛的卵巢动力学和生育力。在实验 1 中,2 岁的 Nelore 小母牛 (n = 973) 被随机分配到四个治疗组之一:EB-0(苯甲酸雌二醇,D0 使用 EB,人工授精时不使用 GnRH),EB-G(D0 使用 EB,人工授精时使用 GnRH),G-0(D0 使用 GnRH,人工授精时不使用 GnRH)或 GG(D0 和人工授精时使用 GnRH)。在 D0,小母牛接受阴道内 P4 植入物(0.5 克)7 天,并接受 EB(1.5 毫克)或 GnRH(16.8 毫克)。在第 7 天,撤回 P4 植入物,小母牛接受氯前列醇 (PGF;0.5 mg) 和环戊丙酸雌二醇 (EC,0.5 mg) 治疗。G 组的小母牛在第 6 天也接受 PGF 和 eCG (200 IU) 治疗,而 EB 小母牛在第 7 天接受 eCG 治疗。在第 9 天的 FTAI 中,只有 EB-G 和 GG 组接受 GnRH (8.4 mg)。在实验 2 中,Nelore 奶牛 (n = 804) 接受相同的治疗 (EB-0、EB-G、G-0 或 GG),使用 1.0 g P4 植入物、2.0 mg EB 和 300 IU eCG。当 P 0.05 时,效果被认为显著。治疗后,D0 时,G 组小母牛排卵数多于 EB 组(60.3 [287/ 476] vs. 12.7% [63/497])和母牛排卵数多于 EB 组(73.7 [83/112] vs. 24.4% [28/113])。D0 后,EB 组小母牛黄体溶解多于 G 组(39.2 [159/406] vs. 20.0% [77/385])和母牛排卵数多于 G 组(25.5 [14/55] vs. 1.6% [1/64])。G 组小母牛在 D7(10.3 ± 0.2 vs. 9.2 ± 0.2)和 AI(11.9 ± 0.2 vs. 11.3 ± 0.2)时卵泡(mm)大于 EB 组。母牛在 D7 时 G 阶段的卵泡比 EB 阶段大(11.0 ± 0.3 vs. 9.9 ± 0.3),但在 AI 阶段则不然。小母牛(80.3 [382/476] vs. 69.6% [346/497])和母牛(67.6 [270/400] vs. 56.2% [227/404])在 G 阶段的发情率高于 EB 阶段。D0 和 D9 处理对小母牛每 AI 妊娠率 (P/AI) 没有相互作用(EB-0:56.7 [139/245]、EB-G:53.6 [135/252]、G-0:52.6 [127/241] 和 GG:57.5% [135/235])。然而,EB-G 母牛的 P/AI 高于 EB-0(69.5 [142/204] vs. 60.2% [120/200]),而 G-0 的 P/AI(62.7% [127/203])与 GG(60.9% [120/197])相似。在小母牛中,GnRH 在 AI 与发情期没有相互作用,但是,如果在 AI 时接受 GnRH,未出现发情的母牛的 P/AI 会更高(GnRH ¼ 59.1 [91/ 154] vs. 未接受 GnRH ¼ 48.2% [78/162])。因此,对 Bos indicus 小母牛和母牛使用 EB 或 GnRH 的方案具有不同的卵巢动力学,但总体生育力相似,因此可用于生殖管理计划。在 AI 期间使用 GnRH 治疗在某些情况下可以提高 Bos indicus 奶牛的生育能力,但对小母牛则没有影响。© 2020 Elsevier Inc. 保留所有权利。