38 MMT 与 2019 年 IEPR 政策驱动的敏感性组合、海上风电政策驱动的敏感性组合 母线映射仪表板工作簿 – 46 MMT 与 2019 年 IEPR 基准案例组合 母线映射仪表板工作簿 – 38 MMT 与 2019 年 IEPR 组合 母线映射仪表板工作簿 – 海上风电敏感性组合 2020 年 IRP 基线(针对非电池资源) IRP 采购决策基线(针对电池存储资源) 海上风电政策驱动敏感性组合的退役清单 太阳能成本敏感性建模幻灯片下面的图是基于地图的视觉表示,以易于理解的方式传达了映射的资源,这是 CPUC 为 2021-2022 年 TPP 传输给 CAISO 的主要输入之一。这些地图概述了母线映射过程实施的结果。本报告的以下章节详细描述了这些结果以及输入、方法和分析。
发现,在负载下测量的包装中的瞬时不平衡会随着平行字符串的添加以及较宽的母线电阻分布而增加。这可能会驱动包装细胞不均匀降解。此外,母线中的开路断层似乎会导致永久性失衡和包装容量的严重缺乏。
1. 最有可能为拟议公共耦合点 (PCC) 提供服务的变电站母线、组或电路。此标识并不一定表示这将是项目最终要连接的电路。2. 基于可能为拟议 PCC 提供服务的正常或运行额定值的变电站母线、组或电路的总容量(MWac)。3. 互连到可能为拟议 PCC 提供服务的变电站母线、组或电路的现有输出容量(MWac)。4. 尚未建造但在先前接受的互连申请中找到的可能为拟议 PCC 提供服务的变电站母线、组或电路的 DER 的输出容量(MWac)。5. 可能为拟议 PCC 提供服务的变电站母线、组或电路的可用容量(MWac)。6. 变电站标称配电电压。7. 与拟议 PCC 相同的标称配电电路电压。8. 拟议 PCC 所在的配电电路的标签、名称或标识符。 9. 拟建 PCC 与变电站之间的大致电路距离。10. 任何相关线路段的实际或估计峰值负载和最小负载数据,包括日间最小负载和绝对最小负载(如有)。如果没有
分布式发电 (DG) 单元是发电厂,对当前电力系统网络的架构非常重要。增加这些 DG 单元的好处是增加网络的电力供应。但是,如果分配和/或大小不正确,安装这些 DG 单元可能会产生不利影响。因此,需要对它们进行最佳分配和大小调整,以避免电压不稳定和投资成本高昂等情况。本文开发了两种基于群的元启发式算法,即粒子群优化 (PSO) 和鲸鱼优化算法 (WOA),以解决输电网络规划中 DG 单元的最佳位置和大小问题。支持技术损耗敏感度因子 (LSF) 用于识别潜在母线,以实现 DG 单元的最佳位置。在两个 IEEE 母线测试系统(14 和 30 母线)上确认了算法的可行性。比较结果表明,两种算法都能产生良好的解决方案,并且在不同指标上彼此优于对方。 IEEE 14 母线和 30 母线测试系统中,考虑技术经济因素后,WOA 实际功率损耗减少量分别为 6.14 MW 和 10.77 MW,而 PSO 实际功率损耗减少量分别为 6.47 MW 和 11.73 MW。在两个母线系统中,PSO 的总 DG 单元尺寸更小,分别为 133.45 MW 和 82.44 MW,而 WOA 分别为 152.21 MW 和 82.44 MW。本文揭示了 PSO 和 WOA 在输电网络中 DG 单元优化定型应用中的优势和劣势。
摘要 — 典型的 4 型风力涡轮机使用直流链路逆变器将电机连接到电网,从而为 N 涡轮机农场的每个涡轮机提供 2 个功率转换器步骤,并将产生 2 N 个功率转换器。这项工作提出了一种用于 4 型风电场的直流总线收集系统,该系统减少了所需的转换器总数,并最大限度地降低了储能系统 (ESS) 要求。这种方法要求每个涡轮机有一个转换步骤,ESS 需要一个转换器和一个电网耦合转换器,这导致风电场的转换器数量为 N +2,并可能节省大量成本。然而,直流收集系统的权衡之一是需要增加能量存储以过滤功率变化并提高电网的电能质量。本文介绍了一种有效的直流总线收集系统设计的新方法。风电场的直流收集在涡轮机之间实施功率相位控制方法,该方法可以过滤变化并提高电能质量,同时最大限度地减少对增加储能系统硬件的需求并提高电能质量。相位控制利用了新颖的功率包网络概念和非线性功率流控制设计技术,可确保稳定和增强的动态性能。本文介绍了直流收集和相位控制的理论设计。为了证明这种方法的有效性,提供了详细的数值模拟示例。
在系统级最小化环路电感是优化整体系统性能的关键杠杆。与基于串联单开关模块的解决方案相比,在单个封装内实现双向开关可降低三级系统中的寄生电感。PrimePACK 3+ 封装具有四个独立的模块内部母线,可同时实现低寄生电感和高载流能力。此概念的交错电源端子设计提供了降低整体系统电感的可能性。由于每个母线对形成带状线导体,因此杂散电感会减小。图 3 显示了三模块 (2:1) 相的模块布置和可能的直流母线结构。图 3A 的中心说明了 CC 模块的电源端子布局。
由于光伏 (PV) - 电池 (BAT) 系统中发电和负载波动很大,因此电源管理策略变得不可或缺,因为需要 BAT 来维持发电/负载平衡并调节直流总线。事实上,能源管理策略必须考虑系统的极限,即标称 PV/BAT 功率额定值和 BAT 的充电状态 (SOC)。然而,实际使用可能与预期不同,迫使系统达到其极限。本文主要关注应用于示例独立直流微电网的极限控制和能量饱和管理。它包括根据电源的额定值准确地在电源之间分配可变功率负载,包括最小 SOC ' BAT 情况下的再生制动和最大 SOC ' BAT 情况下的电力负载需求的全面供应。此外,直流总线电压作为设计参数被调节到其预定义的水平。详细介绍了所提出的控制算法,并给出了过应力和标称条件下的系统设计。该算法的主要优点是其简单性。通过使用 Matlab/Simulink 和 DSpace 的仿真/实验系统验证和分析了能量饱和管理控制策略的有效性。结果表明,所提出的技术可以智能地管理能量流,从而确保系统在正常模式和饱和模式下正确安全地运行。
ccs由一个母线组成,该母线被压入FPC。b液体结构部件,铜和铝条通过热铆接和激光焊接整合到产品中。集成的CCS取代了传统布线线束的结构。这意味着它可以自动组装和焊接,从而提高收集的数据,空间利用率,增加组装效率和其他优势的准确性。
crispr驱动器是一种最新且可靠的工具,可允许对害虫种群(如疟疾媒介蚊子)等害虫种群进行持久的遗传操纵。近年来,有人提出CRISPR驱动器也可以用于控制植物疾病,害虫和杂草。然而,在2021年第一次在拟南芥中使用CRISPR驱动器已被证明在植物育种中使用该技术来获得纯合父母线条。这种观点提出了使用CRISPR驱动器来破坏易感基因的基因来发展耐原体品种的品种。在育种计划中,CRISPR用于在两个父母的杂种品种系列中创建S-基因突变。但是,必须重新涂抹CRISPR或长期折叠,以获得父母线以获取纯合S-突出品种。当父母线与不同的父母线交叉以开发新的杂种时,杂合的S-突变无法在杂种中抵抗病原体。CRISPR驱动器在理论上是有效的,可以通过CRISPR驱动器转换为只有一条父母的线条后,仅通过常规授粉来开发纯合的S-突变植物。以这种方式,育种者可以在不同的交叉组合中使用这条父母线,而无需重新填充基因组编辑技术或反向交叉。此外,CRISPR驱动器还可以允许开发无标记的耐药品种,并在驱动盒上进行修改。