世界正在进行能源转型,以减少二氧化碳排放和减缓气候变化 [1]。正在进行的最重要的行动是加强可再生能源的作用、提高能源效率、实现运输和供暖部门的电气化以及能源储存 [2、3]。氢经济是一种重要的可持续替代方案,将有助于实现运输、供暖部门和能源储存的脱碳 [4]。新冠疫情和乌克兰战争进一步增加了欧洲和西方国家投资氢经济作为化石燃料替代品的兴趣 [5]。氢气显著降低了地缘政治风险,因为它极大地增加了未来能源供应商的多样性 [6]。氢气是一种特别有趣的天然气替代品,因为它也是一种灵活的电力来源,并且可以使用现有的天然气基础设施 [7]。氢气的体积能量密度低,液化后可实现长距离运输。氢气液化会消耗大量能源。现有的氢气液化厂每生产一千克氢气约需 13 千瓦时电力,这约占氢气储存能量的 30% [8]。氢气液化的理论最小能耗(1 bar 时 298 K e 20 K)为每千克氢气 3.7 千瓦时电力,相当于氢气储存能量的 9.3% [8]。正在开发的新工艺可以通过磁制冷将能耗降低到每千克氢气 6 千瓦时电力,效率达到卡诺循环的 50% [9]。用于氢气液化的磁制冷系统的一种可能配置是主动磁再生器 (AMR) 系统。在该系统中,磁性材料通常是一层填充的颗粒床,它们通过一系列磁场循环以提供冷却效果。 AMR 系统已被证明具有很高的冷却能力和效率,使其成为一种很有前途的 H 2 液化技术[10]。显著提高液化效率的另一个方面是规模效应。例如,氢气液化量从每天 100 吨增加到 1000 吨,可将液化成本从 2 美元/千克 H 2 降低到 1 美元/千克 H 2 [8]。液态空气已被提议用于不同目的的冷能回收[11]。例如,使用液态空气储能 (LAES) 来储存电能,即将热能储存在液态空气中,然后用于发电[12]。液态空气已被提议用于液化天然气 (LNG) 工艺的冷能回收,类似于本文提出的方案[13]。使用
抽象的金属添加剂制造(AM)被认为是其带来的设计自由,但它在环境上还是比传统制造更好或更糟?由于很少发布直接比较,因此本研究将生命周期评估文献中的AM数据与Granta Edupack数据库的常规制造数据进行了比较。比较包括多种用于钢,铝和钛的印刷技术。的结果表明,金属AM的二氧化碳占地面积比铸造,挤压,滚动,锻造和线绘图要高得多,因此它通常比这些选择不那么可持续。但是,在某些情况下,这是一个更可持续的选择,这些情况与航空航天行业的使用金属AM之间存在重大重叠。值得注意的是,轻巧的零件减少了体现材料的影响,并通过燃料效率降低了使用相的影响。最后,一个关键的发现是将加工与每千克加工的材料进行比较无关,因为一种是减法,另一种是加性的。建议将来的研究使用更相关的功能单元来提供更好的比较。关键字:添加剂制造,金属3D打印,可持续性,生命周期评估,轻量级设计联系人:Faludi,Jeremy Tu Delft工业设计工程荷兰,J.Faludi@tudelft.nl
车辆超过每年每年三(3)个调子1,000 1,000艘船:不超过每年十(10)吨每年1,000艘1,000船超过每年的10(10)吨5,000吨5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000列5,000条钓鱼许可证2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000年2,000次每年年度贸易者400 400 400 400 400 400次私人列入500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000倍数1,000 1,000 1,000 1,000个运动钓鱼俱乐部注册1,500 1,500 1,500 1,500(viii)鱼类转运费,每公斤2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2(IX),每袋小袋小袋,每袋25千克25千克新的25 25 25 25个中型25个中型袋装,最高500千克,每千克,售价为90 kgs new 400 kg seque New 500千克
45V 美国法典 [USC] § 45V,《降低通货膨胀法案》 AIB 发行机构协会 BIL 两党基础设施法 CAISO 加州独立系统运营商 CEBA 清洁能源买家协会 CFE-ATC 全天候无碳能源 DOE 美国能源部 EAC 能源属性证书 EIA 能源信息管理局 EDF 环境保护基金 EPA 美国环境保护署 ERCOT 德克萨斯州电力可靠性委员会 ERM 环境资源管理局 EU 欧盟 FERC 联邦能源管理委员会 G20 二十国集团 gCO 2 /MJ 每兆焦耳二氧化碳克数 GGO Geaux 绿色选择 GHG 温室气体 GREET 温室气体、受管制排放和交通运输中的能源使用 GW 吉瓦 IRA 《降低通货膨胀法案》 ISO 独立系统运营商 ISO-NE 新英格兰独立系统运营商 ITC 投资税收抵免 kg CO 2 e/kg H 2 每千克氢气对应的千克二氧化碳当量 kg CO 2 e/MWh 对应的千克二氧化碳当量每兆瓦时
AEC 陆军环境中心 ASTM 美国材料与试验协会 ATI 分析技术公司 bbl 桶(相当于 42 加仑) bgs 地下水位测量 EPA-DTSC 加利福尼亚州环境保护署、有毒物质控制部 CAS 化学文摘社 cm 厘米 CPT 锥形穿透仪测试 CSC 计算机科学公司 CSCT 场地特性技术联盟 DFM 柴油 船舶 DHS 加利福尼亚州卫生服务部 DoD 国防部 DOE 能源部 DOT 运输部 DQO 数据质量目标 EMMC 环境监测管理委员会 EPA 美国环境保护署 ETI 环境技术倡议 ETV 环境技术验证 ft 英尺 FVD 荧光与深度 GC/FID 气相色谱/火焰离子化检测器 HNTS 碳氢化合物国家试验场 HSA 空心钻头 Hz 赫兹 IDW 调查衍生废物 IR 红外线 IRP 安装恢复计划ITVR 创新技术验证报告 LIF 激光诱导荧光 LOD 检测限 m 米 � m 微米 mg/kg 毫克每千克 mg/L 毫克每升 m/min 米每分钟
当今世界对清洁能源的需求超过了供应。这使得清洁能源(如聚变)越来越受到决策者、投资者和广大公众的关注。原则上,聚变每千克燃料产生的能量是裂变的四倍,是燃烧石油和煤炭的近四百万倍。目前国际社会对这种清洁能源的承诺水平使我们更接近聚变能源。一个典型的例子是 ITER,它是世界上最大的聚变实验,它联合了来自 35 个国家的科学家,旨在实现自持聚变反应并展示可观的能量增益。建设正在进行中,一旦完成,ITER 有望开启聚变能源发展的下一阶段,示范聚变发电厂(称为 DEMO)旨在首次从聚变中发电。国际原子能机构处于 DEMO 开发的前沿,促进国际协调并分享世界各地项目的最佳实践。国际原子能机构鼓励对 DEMO 的讨论,并推动广泛的国际对话,以克服高度技术挑战并使聚变能成为现实。国际原子能机构出版的科学期刊《核聚变》见证了该组织对聚变研究的承诺。它是世界上历史最悠久、最权威的聚变期刊。该出版物是对之前发行的《聚变物理学》的补充,描述了磁聚变技术的广泛领域,从等离子体加热和电流驱动到聚变中子学和材料和组件,再到真空泵送和燃料,再到氚处理和氚工厂。
氢是地球上数量最多、最简单的元素。它可以储存和释放可用能量。然而,氢并不单独存在于自然界中,必须由包含它的不同元素制成。例如,它可以与碳(如石油、天然气)和水中的氧(H 2 O)结合[1]。氢的每千克比能量是所有燃料中最高的(即 120-140 MJ/kg),但其能量密度不太适合储存(即 2.8-10 MJ/L),具体取决于物理储存方式(如压缩(350-700 bar)、液体)[2]。一方面,全球利用重整工艺从天然气、煤炭和石油中生产的氢气约占 96%。另一方面,利用水电解工艺将去离子水分解为氢气和氧气约占全球氢气产量的 4% [3]。尽管氢气本质上是一种清洁的能源,但它需要能量来生产;所采用的能源类型有所不同。由化石燃料生产的氢气由于间接污染而被称为灰氢。为了供应水电解过程,可再生能源 (RES)(例如风力涡轮机、光伏)是最适合的,因为它们可以限制对环境的影响。通过这种方式,可以获得所谓的绿色氢气。将这种氢气混合到现有的天然气管道网络中已被提议作为增加可再生能源系统产量的一种手段。通过管道输送氢气和甲烷混合物也有悠久的历史;最近,风电装机容量的快速增长以及对燃料电池电动汽车近期市场准备的关注,增加了利益相关者的兴趣 [ 4 , 5 ]。
抽象的免疫检查点抑制剂(ICI)彻底改变了癌症治疗,但与不经常但致命的心肌炎有关,管理层仍然不确定。abatacept是靶向抗原细胞的CTLA-4融合蛋白靶向CD86并导致全局T细胞厌食的,已被描述为在个别报告中的潜在治疗方法。然而,尚不清楚Abatacept治疗剂量,时间表和与其他免疫抑制疗法的最佳组合。我们描述了一个25岁的男人,他开发了pembrolizumab(抗PD1)在第一次注射胸腺瘤治疗后14天诱导心肌炎,尽管迅速启动皮质类固醇和甲状腺素 - Mycophophopys-粘纤维,但仍需要紧急的体外生命植入,从而持续进行心脏异常性心律失常,并需要持续的心室心律失常。使用串行测量策略确保在循环单核细胞上具有> 80%CD86受体占用率的靶标,对Abatacept剂量进行了调整,并将其与鲁uxolitinib和甲基丙糖醇合并。这种策略在前10天内产生了高剂量的abatacept:60 mg/ kg,三剂(每千克20 mg/ kg),然后是两剂。临床改善发生在7天内,通过收缩性心脏功能障碍和心室心律不齐,从而成功出院。我们使用特定的患者调整后的Abatacept逆转了几乎致命的ICI肌心炎的病例,这可以作为对严重ICI不良事件患者的个性化治疗的基础。试用注册号:NCT04294771。
最近的研究表明,与灰氢相比,蓝氢可减少温室气体 (GHG) 排放 5 – 36%,6 而对上游甲烷泄漏和碳捕获率的不同假设则可使蓝氢与灰氢相比减少 26 – 75%。7 电力来源导致电解氢 1,3,7 – 10 的温室气体足迹存在很大差异,差异最高可达 200%(即绝对差异除以平均值),如何在氢气和联产氧气之间分配温室气体排放的“多功能性”问题也是如此(差异为 158% 11)。具体而言,绿色氢的温室气体足迹因使用不同的可再生电力(风能或太阳能光伏)而有所不同:102 – 120% 的差异,9 不同的电解技术(碱性电解或聚合物电解质膜电解):16 – 40% 的差异,9 以及对未来改进的各种假设(提高效率和延长使用寿命):18% 的差异。8 绿色氢的温室气体足迹范围很广,这需要进一步了解如何评估这些足迹,它们如何出现差异以及如何降低它们。对于绿色氢,特别值得关注的是额外性原则,12 这指的是仅使用新安装的、额外的、可再生电力容量来生产绿色氢,以满足电解器日益增长的需求(从而防止额外的化石电力发电)。欧盟委员会的 2020 年氢能战略说明了额外性的相关性,该战略预计到 2030 年绿色氢气产量将达到 1000 万吨,2 这将需要欧盟 2020 年所有风力涡轮机发电量 394 TW h 的 140%(参考文献 13),以每千克氢气 55 kW h 的电力需求计算。10
定义 空气比释动能 - dE tr 除以 dm 的商,其中 dE tr 是空气体积元素中光子释放的所有电子的初始动能之和,dm 是该体积元素中的空气质量。空气比释动能的 SI 单位是戈瑞 (Gy)。光束质量 - 用于指具有特征半值层并由恒定电位千伏产生的特定 X 射线束。校准 - 通过与适当的国家标准进行比较来表征剂量计或测量仪器的响应的过程。校准系数 - 没有电离室时的空气比释动能与电离室中该辐射产生的电荷的商,以 Gy/C 为单位表示。校准因子 - 在没有电离室的情况下空气比释动能或曝光量与电离室的静电计读数之比(无量纲)。有效能量 - 具有与所讨论光谱相同半值层的单能 X 射线束的能量。曝光量 - 曝光量 (X) 是 dQ 除以 dm 的商,其中 dQ 是当所有电子完全停止在质量为 dm 的空气中时,在空气中产生的所有同号离子的电荷之和。曝光量的 SI 单位是库仑每千克 (C/kg);特殊曝光量单位伦琴 (R) 等于 2.58E-4 C/kg。半值层 - (HVL) 作为光束衰减器添加的指定材料的厚度,该衰减器将空气比释动能速率降低至未衰减光束空气比释动能速率值的一半。均匀性系数 - (HC) 第一个半值层与第二个半值层的比率。监测仪器 - 用于监测辐照期间空气比释动能速率稳定性的仪器。四分之一值层 - (QVL) 作为光束衰减器添加的指定材料的厚度,该衰减器将空气比释动能速率降低至未衰减光束空气比释动能速率值的四分之一。第二个半值层 - 四分之一值层和半值层之间的差值。X 射线单元 - 由高压发生器、X 射线管和 X 射线控制器组成的系统。