目前,正在考虑的其他主要永久性处置“负排放”技术是直接空气碳捕获和储存(DACCS),由于二氧化碳在大气中的浓度很低(0.04%),该方法需要大量的脱碳能源。该领域的先行者 Climeworks 希望达到每吨二氧化碳 2,000 千瓦时(KWh/吨)的发电量。根据国际能源署 (IEA) 温室气体研究与发展计划的数据,目前 DACCS 的成本在每吨二氧化碳 350 至 700 美元之间,生命周期排放量在捕获的碳的 7% 至 17% 之间,但世界上唯一实际运行的大型 DACCS 工厂是 Climeworks 位于冰岛的 Orca 工厂,该工厂将其碳补偿以每去除一吨二氧化碳约 1,000 欧元的价格出售给污染公司。据 Climeworks 称,DACCS 使用的土地仍比树木少 1,000 倍。但该领域发展非常迅速,新项目正在建设中,预计能源效率将显著提高,成本将降低,尽管这不太确定,且仍然取决于政策支持。
本文旨在概述不同主题,例如生产特性、材料和能源使用、主要建筑材料生命周期涉及的工业部门的技术和能力的现状和未来发展。所用方法如图 1 所示。目标是量化比利时现有工艺产生的每吨材料的温室气体排放量及其未来发展和技术选择。
在本研究中,使用 Aspen Plus 中的速率模型模拟和优化了传统单乙醇胺 (MEA) 吸收工艺中直接从环境空气中捕获二氧化碳 (CO 2 ) 的过程。该工艺旨在从空气中捕获特定量 (148.25 Nm 3 /h) 的 CO 2,该量由潜在应用决定,即从 2.7 MW 电解器的输出 (593 Nm 3 /h H 2 ) 中生产合成甲烷。我们通过对不同参数进行敏感性分析研究了该工艺的技术性能,例如空气湿度、捕获率(定义为工艺过程中捕获的 CO 2 摩尔数与进料流中 CO 2 总摩尔数之比)、贫吸收液和富吸收液的 CO 2 负荷以及再沸器温度,并评估了该系统的能耗和总成本。为了满足标准填料塔的设计要求,富吸收液被循环到吸收器的顶部。本工艺选定 50% 的捕获率作为基准。捕获率较高时,由于解吸器需要更高的蒸汽汽提率,因此捕获每吨 CO 2 所需的能量也会增加;捕获率较低时,由于在给定的 CO 2 产量下需要处理更大量的空气,设备尺寸(尤其是吸收器和鼓风机)也会增加。基准情景下,再沸器负荷为 10.7 GJ/tCO 2 ,电能需求为 1.4 MWh/tCO 2 。吸收器直径和高度分别为 10.4 米和 4.4 米。解吸器相对较小,直径为 0.54 米,高度为 3.0 米。安装在吸收器顶部的洗涤水段将 MEA 损失降低至 0.28 kg/吨 CO 2 。然而,这增加了约 60% 的资本成本,导致在 MEA 基准情景下,二氧化碳捕获成本为每吨二氧化碳 1,691 美元。根据技术经济分析,假设使用非挥发性吸收剂而不是 MEA,从而避免了洗涤水部分,并使用由更便宜的材料建造的吸收塔,每吨二氧化碳的预计成本降低至 676 美元/吨二氧化碳。总成本范围在每吨二氧化碳 273 美元到 1,227 美元之间,具体取决于不同的经济参数,例如电力(20-200 美元/兆瓦时)和热价(2-20 美元/GJ)、工厂寿命(15-25 年)和资本支出(±30%)。为了进一步降低成本,使用在较低液气比下运行的创新廉价气液接触器至关重要。
脱碳是我们这个时代最重要的问题之一,显然为 Befesa 带来了巨大的机遇。全球大多数公司都坚定承诺要减少二氧化碳排放量。随着钢铁行业寻求脱碳,它需要转向二氧化碳排放量较低的生产技术。与碱性氧气转炉 (BOF) 相比,电弧炉 (EAF) 每吨钢产生的二氧化碳减少了七倍。
修订日期 变更描述 2021 年 6 月 为了与 2021 年 2 月发布的 IWG 中期估计保持一致,对二氧化碳、甲烷和一氧化二氮的估计值进行了修订,以反映美国经济分析局 (BEA) NIPA 表 1.1.9 中年度 GDP 隐含价格平减指数值的使用。 2021 年 6 月 为了与 IWG 方法保持一致,甲烷和一氧化二氮的值已四舍五入为两个有效数字,并使用 PAGE 模型重新计算了估计值,以排除少数模型运行,在这些模型运行中,边际运行触发了气候不连续性,但基线运行没有触发,从而导致虚假的高值。 2021 年 10 月 更正执行摘要中的错字,将一氧化二氮价值的中心值从每吨 142,000 美元更改为每吨 42,000 美元。 2022 年 5 月 添加了氢氟碳化物 (HFC) 的值,更新了描述这些值的文本,并提供了示例。更新了有关全球与国内 SCC 的联邦政策描述。
从源分离和机械治疗的非回收废物中获得的固体回收燃料(SRF)可以替代水泥厂中的碳焦,从而导致碳中立性。在意大利机械处理厂中进行了非回收和选定废物的SRF生产的生命周期评估(LCA),以估计每吨SRF产生的潜在环境影响。该分析将有助于评估由于最佳和最差的SCE Narios中可乐替代而获得的收益。评估了可能影响环境益处的变量的评估:SRF生物碳含量(以纸张和纸板的百分比)进行评估;从处理厂到水泥窑的运输距离;机械设施中使用的可再生能源。平均而言,大约35.6 kgco 2 -eq由SRF运输和生产阶段产生。这些影响通过可口可乐的替代而大大弥补,获得约-1.1 TCO 2 -EQ的净值避免了每吨SRF。平衡,由于SRF的产生和消费量,全球变暖潜力范围从约-542 kgco 2 -eq到约-1729 kgco 2 -eq。该研究建议使用SRF在水泥窑中替代可乐,也可以在较低的人口稠密的地区替代可乐,以减轻环境影响并在全球范围内实现碳中立性。
直接空气碳作为一种负排放技术,对于降低大气中的二氧化碳浓度至关重要。伴随着这项技术的开发和应用,与直接空气碳捕获相关的高能源需求和大量资本成本一直存在。本文旨在分析利用氢氧化物燃料电池的技术和经济可行性,以作为直接空气碳捕获的过程的电力和高级热量的来源。至关重要的是,使用可再生的氢产量的可再生形式是可持续的,因此,对50 MW固体氧化物燃料电池进行了建模,可再生的氢供应50 mW固体氧化物燃料电池,并与直接的空气碳捕获过程集成,从而使系统能够直接从空气中直接删除270 kt/年的碳二氧化碳。该系统的当前捕获成本与可再生氢的价格相差很大,估计范围为314 - 1,505英镑,每吨二氧化碳捕获。随着可再生氢的成本在将来下降,这种过程可能成为天然气饲料直接空气捕获的可行替代品,预计每吨的捕获成本为2050英镑。
排放定价以两种方式影响家庭成本。首先,它会根据燃烧时发出的CO 2的数量直接提高燃料的价格。2023年的价格为每吨65美元,转化为每升汽油14.3美分,天然气3.32美元。第二,化石燃料的价格上涨 - 汽油,柴油,天然气,加热油等- 浏览供应链,间接提高了整个经济的商品和服务价格,从而增加了家庭成本。
我们继续完善我们如何测量和管理碳足迹,并筛选了范围3的排放,以告知我们的还原策略,以便到2040年获得净零。这种更广泛的测量,方法论的变化以及诸如增长企业较高的运输燃料消耗等因素有助于增加碳强度。考虑到代表客户通过服务避免的排放,我们为每吨废物处理了相当于1.36吨的碳,这是我们整体碳性能的重要基准。
抵消我们迄今已完成的工程产生的残留碳需要数亿美元的投资。2024 年澳大利亚的碳信用额交易价格约为每吨二氧化碳当量 35 美元。随着我们接近净零排放目标日期,抵消成本可能会更高。因此,我们现在需要专注于投资低碳技术、材料和施工方法,使这些技术、材料和施工方法变得可用,并最终实现更具成本效益的减排。