上述参数的提高是通过高涵道比实现的,这种技术在 20 世纪 60 年代中期开发出来,如今每架客机上都可以看到这种技术。在涵道比 (BPR) 为 10:1 的情况下,推力高达 115,000 磅 (514 kN),质量流速高达 1,300 kg/s,这足以让任何工程师都印象深刻。当然,现在所谓的小型微型涡轮喷气发动机无法与这些数字相媲美,但这并不会使它们变得不那么令人印象深刻或复杂。虽然微型涡轮机的设计人员也必须实现效率和功率目标,但他们面临着在更小的规模上实现这些目标的额外挑战,这对材料和部件来说带来了更多问题。高效设计这种高性能发动机的最佳方法是使用虚拟原型,例如计算流体动力学 (CFD) 和结构分析。本文探讨了如何使用 FloEFD 模拟微型涡轮机的流体流动、热条件和燃烧,以及如何将这些模拟结果应用于结构分析模型。
因此,随着对电力的需求增加,传统的液压和气动系统、飞机的发电容量也需要显著增长。目前正在酝酿另一场推进技术的革命:每架 787 飞机都能为其机载系统产生约 1,000kVA 的电力,而根据波音公司的数据,大量初创公司的计划在其机载系统中使用某种形式的电力推进,其发电容量明显高于上一代机型。机载心脏目前正在开发中。这些飞机的电力存储量也有显著增长。在从小型通用航空飞机到城市机动性设计一直到军事领域,这种阶跃变化一直伴随着商用客机的出现,F-35 能够为商用客机产生约 400kVA 的电力,而如果要在未来实现后者类别的电动飞机,空客认为需要在平台上添加传感器和系统。该系统消除了船舶重量和复杂性,作为实现最终目标的一步,
上述参数的提高是通过 20 世纪 60 年代中期开发的高涵道比实现的,如今每架客机上都安装了这种技术。以 10:1 的涵道比 (BPR) 达到 115,000 磅 (514 kN) 的推力,质量流速高达 1,300 kg/s,足以让任何工程师印象深刻。当然,现在所谓的小型微型涡轮喷气发动机无法与这些数字相媲美,但这并不会使它们变得不那么令人印象深刻或复杂。虽然微型涡轮机的设计人员也必须实现效率和功率目标,但他们面临着在更小的规模上实现这些目标的额外挑战,这对材料和部件提出了更多问题。高效设计这种高性能发动机的最佳方法是使用虚拟原型,例如计算流体动力学 (CFD) 和结构分析。本文探讨如何使用 FloEFD 模拟微型涡轮机的流体流动、热条件和燃烧,以及这些模拟结果如何应用于结构分析模型。
我们对印度有着强烈的亲和力,并渴望将我们的命运编织在一起。这就是为什么“印度制造”是我们本地商业战略的核心,我们自豪地说,今天制造的每架空客商用飞机都有一部分是在印度制造的。我们不仅支持 7,000 个工作岗位,而且还通过从印度供应商处进行高质量采购(价值超过 6.5 亿美元/年),不断增加印度对我们全球产品的贡献。此外,我们还通过现代化的培训中心分别在德里首都区和班加罗尔培训飞行员和维修工程师,支持印度民航领域的快速增长。2021 年,印度正式收购 56 架空客 C295 飞机,以取代印度空军 (IAF) 遗留的 AVRO 机队,为私营部门首个“印度制造”航空航天计划打开了大门。C295计划将印度登上全球著名飞机制造国的地图,不仅为印度空军服务,而且为印度政府提供了“ Atmanirbhar Bharat”的愿景
该俱乐部是 Flying Start Challenge 的支持者之一,该比赛由西南地区的企业和组织为当地学校举办,旨在帮助培养科学和工程技能,并突出工程职业的机会。要了解更多信息,请访问 www.flyingstartchallenge.co.uk。挑战赛的最后阶段于今年 3 月 18 日在 Yeovilton 的 RNAS 博物馆举行。为了激发兴趣,David Zarb 同意带上他的 Ventus 2cxt“Charlie Zulu”,并将其作为静态展示品在博物馆外进行安装。Jeremy Mitcheson 和 Bob Page 与 David 一起安装/拆卸滑翔机,并与(大多数)非常感兴趣的学生和他们的老师进行交流。CZ 看起来非常时尚,旁边还有一架 Sea King 和一架 Lynx 直升机,也在静态展示中。挑战之一是让每所学校设计和建造一架模型滑翔机,花费不到 15 英镑。每架滑翔机都要进行两次室内飞行,获胜者就是
对自动空中流量的研究工作将需要用于测试算法功能的工具。测试将需要灵活的方法来创建大量人造数据以验证自动化系统的安全性。这项工作中的交通生成方法是为了测试交通预测和重新算法的自动驾驶汽车,试图降落在非较低的机场。交通生成方法生产机场方法轨迹,支持多种模式输入类型和典型的模式修改操作,用于多种飞机类型,具有不同的性能功能。对于每架飞机,都有选择方法类型,修改方法的飞行方式,并施加了场景驱动的时间约束,例如飞机对之间的间距。该工具使用简化的飞机动力学来生成交通车辆的位置和速度轮廓。此外,该工具还支持独立的仿真测试或批处理/批量测试工作,多个输出数据选项,并促进后处理分析。
我们对印度有着强烈的亲和力,并渴望将我们的命运编织在一起。这就是为什么“印度制造”是我们本地商业战略的核心,我们自豪地说,今天制造的每架空客商用飞机都有一部分是在印度制造的。我们不仅支持 7,000 个工作岗位,而且还通过从印度供应商处进行高质量采购(价值超过 6.5 亿美元/年),不断增加印度对我们全球产品的贡献。此外,我们还通过现代化的培训中心分别在德里首都区和班加罗尔培训飞行员和维修工程师,支持印度民航领域的快速增长。2021 年,印度正式收购 56 架空客 C295 飞机,以取代印度空军 (IAF) 遗留的 AVRO 机队,为私营部门首个“印度制造”航空航天计划打开了大门。C295 项目将使印度成为全球知名飞机制造国之一,不仅能为印度空军提供良好服务,还能实现印度政府的“自力更生的印度”愿景。
1988 年 8 月 20 日以后生产的商用飞机采用的面板可减少热量和烟雾排放,从而延迟轰燃(即封闭区域内所有可燃材料同时或几乎同时着火)的发生。在飞机的使用寿命内,内饰会经过多次更新和翻新。这使得即使是较旧的飞机,其内饰也会融入这些改进。此外,1990 年 8 月 20 日或之后生产的飞机必须符合以下明确标准:最大峰值热释放率为每平方米 65 千瓦,最大总热释放率为每平方米 65 千瓦分钟,特定光学烟雾密度为 200(即俄亥俄州立大学定义的 oSu 65/65/200 消防安全标准)。每架波音客机还配备了全面的防火系统。这些系统包括使用防火材料、烟雾探测和灭火系统以及隔热毯,以抵抗机身下半部分附近燃料火势的烧穿。(有关客舱防火的更多信息,请参阅第 19 页。)
摘要:飞机轨迹预测是进离场排序、冲突检测与解决等空中交通管理技术的基础。准确的轨迹预测有助于增加空域容量,确保飞机安全有序运行。目前的研究主要集中在单架飞机轨迹预测,没有考虑飞机之间的相互作用。因此,本文提出一种基于社会长短期记忆(S-LSTM)网络的模型,实现多架飞机轨迹协同预测。该模型为每架飞机建立一个LSTM网络,并通过一个池化层来整合关联飞机的隐藏状态,可以有效捕捉它们之间的相互作用。本文以北加州终端区的飞机轨迹为实验数据。结果表明,与主流的轨迹预测模型相比,本文提出的S-LSTM模型具有较小的预测误差,证明了该模型性能的优越性。另外,在存在飞机相互作用的空域场景中进行了对比实验,发现S-LSTM的预测效果优于LSTM,证明了前者考虑飞机相互作用的有效性。
KFC 400 飞行控制系统在一台计算机中整合了完整的自动驾驶仪和飞行指引仪计算功能。其数字飞行计算机和集成架构使 KFC 400 能够更快地确定飞机控制要求,并且比以前的自动驾驶仪系统更平稳、更准确地执行这些要求。主要由于其双通道飞行计算机设计,KFC 400 可以更积极地控制飞机,同时提供单通道系统无法提供的安全监控级别。整个飞行控制系统采用数字化、固态设计,在节省系统重量和所需安装空间的同时,提供最大的可靠性。KFC 400 旨在优化乘客和机组人员的舒适度,同时在任何飞行情况下仍提供准确的控制响应。只要有可能,自动驾驶仪引起的飞机运动就会接近人类可感知的下限,从而确保飞行异常平稳。但是,飞行控制系统的许多最大可控值是在飞行控制系统认证过程中为每架飞机确定的。有关特定值,请参阅您的飞机的 KFC 400 飞行手册补充。