众所周知,氮是水产养殖中的主要污染物,对鱼类可能有毒性作用。当吸收有毒浓度时,氮可以进入鱼类的血液,影响血液参数,免疫反应并引起氧化损伤和神经毒性。最近,进行了一项研究,以研究氨,肝,生长,组织损伤和免疫指数在甲醛甲醛(FBS)存在下的毒性作用。该研究涉及360 C. rubrofuscus,它们在24个水族箱中随机分布,FBS与将氨的比例与31mg/l:1mg/l。实验是在6种治疗中用15条鱼进行的,并进行了4次重复,直到观察到50%死亡率。研究了鱼类的生长,组织学,血液学,免疫力,肝酶和生化特征,并使用单向方差分析(单向ANOVA)和Duncan的测试对结果进行了分析。研究发现,在FBS存在的情况下,锦鲤鱼的血液,免疫和肝脏指标发生了变化。此外,将FBS添加到水族馆水中减少了鱼储罐中的氮化合物,从而进一步降低了鱼类水族箱中的氮化合物。
摘要:癌症是仅次于心血管疾病的第二大常见死亡原因,是当今最重要的健康问题之一。发现有效治疗和药物在癌症治疗中很重要。COVID-19-19年流行病于2019年12月在中国武汉省爆发,被认为是全球大流行的人,影响了数百万的人。引起这种流行病的SARS-COV-2病毒会影响肺,心脏,大脑,肾脏,胃肠道系统,卵巢和睾丸以及各种药物。在这项研究中,我们旨在确定Favipiravir,Dornase Alfa和Ivermectin的细胞毒性作用,这些药物是在人类肺癌细胞系上用于治疗Covid-19的药物(A549)。favipiravir,Dornase alfa和ivermectin浓度以双重增加的剂量(0.5-64 µg/ml)制备。在人A549细胞上测试了制备的浓度。孵育24小时后,通过MTT(3-(4,5-二甲基噻唑-2-基) - 二苯基四唑铵)方法检测到药物对癌细胞的细胞毒性作用。结果以百分比的生存能力。确定Favipiravir,Dornase Alfa和Ivermectin可以显着降低肺癌细胞系中的细胞活力,而施用剂量的增加(P <0.05)。
有关有限数量的暴露孕妇的数据并未表明Nystatin对天鹅或胎儿/新生儿的健康的副作用。到目前为止,尚无其他相关的流行病学数据。动物实验研究不表明胚胎或胎儿毒性作用(请参见5.3)。nystatin由于其在完整的皮肤或粘膜上的治疗剂量中的分子大小而被吸收。nystatin,也不会预期转移到母乳中。nystaderm-s可以在怀孕和母乳喂养后用于福利/风险评估。
我们为什么要关注 PFAS?每个人都会接触到 PFAS。一些 PFAS 会对健康构成威胁,并且已知具有毒性作用。PFAS 存在于许多不同的商业产品中,例如不粘涂层、防污防水产品、防护涂层、个人保健产品、消防泡沫和建筑树脂(ITRC 2018)。某些 PFAS,包括 PFOS 和 PFOA,具有移动性、持久性和生物累积性,并且不会在环境中降解(ITRC 2020)。
摘要:传统上牙科中使用的抗菌剂的持续和不当使用导致了多重耐药 (MDR) 菌株的出现以及微生物的突变。这一问题导致了多种纳米粒子的开发,以对抗耐药性病原体。二氧化钛 (TiO 2 ) 纳米粒子由于其化学稳定性、无毒且前体廉价而成为有吸引力的抗菌剂。因此,我们探索了 TiO 2 基纳米分散体,通过使用众所周知的抗菌剂(例如次氯酸 (HOCl))来制备它们,以增强抗菌效果。在本研究中,合成并表征了溶胶-凝胶基 TiO 2 NPs-HOCl 纳米分散体。通过培养不同浓度的纳米分散体,使用变形链球菌、金黄色葡萄球菌、粪肠球菌和白色念珠菌菌株通过微量稀释测定来评估抗菌效果。为了评估细胞毒性作用,接种了根尖乳头干细胞 (SCAP),并使用 MTT 测定法进行评估。纳米分散体表现出增强的抗菌作用,几乎没有细胞毒性。基于 HOCl 的纳米分散体表现出更大的抗菌作用和高稳定性。因此,它可以用作治疗各种牙科病原体的有前途的抗菌剂。关键词:TiO 2 纳米粒子、HOCl、抗菌作用、细胞毒性作用、SCAP。
摘要:重金属是具有高密度的化学元素,即使在低浓度下也可能有毒或有毒。由于工业活动,采矿,农药使用,汽车排放和国内废物,它们在环境中广泛分布。这项研究旨在研究铜(CU)重金属对遗传和表观遗传参数的铜(CU)对Saffore植物的毒性作用。Safflower seeds were exposed to different concentrations of Cu heavy metal solution (20, 40, 80, 160, 320, 640, 1280 mg L − 1 ) for three weeks, and changes in the genomic template stability (GTS) and methylation pattern in the root tissues were analyzed using PCR and coupled restriction enzyme digestion-random amplification (CRED-RA)技术。结果表明,高剂量的Cu对Saf塑料植物的基因组具有遗传毒性作用。表观遗传分析显示,在20 mg l -1浓度下观察到的四种不同的甲基化模式,总甲基化速率为95.40%,在160 mg l -1时观察到的最低速率为92.30%。此外,在80 mg l-1处检测到非甲基化的最大百分比。这些结果表明,甲基化模式的变化可以作为保护CU毒性的重要机制。此外,可以将Saffower用作生物标志物,以确定被CU重金属污染的土壤中的污染。
抽象的临床前和临床研究表明,除具有滥用潜力外,精神刺激物还可能引起脑功能障碍和/或神经毒性作用。由精神刺激物引起的中央毒性可能构成严重的健康风险,因为这些物质的娱乐使用在年轻人和成年人中正在上升。本评论概述了2018年至2023年之间进行的最新研究概述,重点是苯丙胺,可卡因,甲基苯丙胺,3,4-甲基甲基甲基甲基甲基苯丙胺,甲基甲基苯胺和NICETINE,NICETINE,NICETINE,甲基苯基甲基甲甲基苯二甲胺,甲基苯丙胺,3,4-甲基苯甲胺,3,4-甲基苯丙胺,3,4-甲基苯丙胺,3,4-甲基苯丙胺,3,4-甲基苯丙胺引起的脑功能障碍和神经毒性作用。详细阐明了基于精神刺激诱导的脑功能障碍和神经毒性的因素和机制,对于理解使用精神刺激物来用于娱乐和/或治疗用途的个人中可能发生的急性和持久的有害脑作用至关重要。关键词:3,4-甲基二甲基甲基苯丙胺;苯丙胺;咖啡因;细胞培养;可卡因;甲基苯丙胺;哌醋甲酯;神经毒性;尼古丁
摘要:DNA 是一种出色的可编程聚合物,可用于生成可用于生物医学应用的自组装多价纳米结构。在此,我们开发了 (i) 叶酸功能化纳米笼 (Fol-NC),可非常有效地被过度表达叶酸受体 α 异构体的肿瘤细胞内化;(ii) AS1411 连接纳米笼 (Apt-NC),通过核仁素内化,核仁素是一种在许多类型癌症的细胞表面过度表达的蛋白质;以及 (iii) 同时具有叶酸和 AS1411 适体功能化的纳米结构 (Fol-Apt-NC)。我们分析了所有类型的纳米结构的特定 miRNA 沉默活性,这些纳米结构含有与 miR-21 互补的 miRNA 隔离序列,以及在耐药三阴性乳腺癌细胞系中装载阿霉素时的细胞毒性作用。我们证明,与用 AS1411 功能化的纳米笼相比,叶酸作为靶向配体的存在提高了 miR-21 沉默的效率。与游离阿霉素相比,装载了阿霉素的双功能化纳米笼 (Fol-Apt-NC) 对 MDA-MB-231 细胞的细胞毒性作用增加了 51% 以上,除了选择性之外,还证明了纳米笼能够克服阿霉素化学抗性。叶酸功能化纳米笼的更高效率归因于进入方式,它诱导了四倍以上的细胞内稳定性,并表明当叶酸和 AS1411 修饰同时存在时,叶酸介导的细胞进入途径比核仁素介导的途径更有效。
神经退行性疾病可以被识别为一类神经疾病,在细胞内病理学过程中共享相似性。神经变性的最典型标志,特异性蛋白的积累,伴随着其他细胞内过程,导致亚细胞结构功能障碍。在帕金森氏病,α-突触核蛋白(αs)的积累和高级聚集体的形成中,最终被认为是Lewy体的,被认为是主要的标志(Braak等人2003)。 帕金森氏病(PD)是全球第二普遍的神经退行性疾病(Polito等人 2016)。 在PD病理学期间发生了多种平行和/或先前的变化。 鉴于有关该主题的数据量,线粒体功能障碍主要是通过呼吸链破坏并因此增加了活性氧(ROS)的产生,仍被认为在细胞内发病机理中起着不可或缺的作用(Perfeito等人(Perfeito等) 2012,Park等。 2018)。 线粒体网络通过平衡的融合和裂变过程积极维持,通过线粒体来协调线粒体降解(Park等人 ) 2018)。 线粒体膜动力学受分子因子范围适当调节。 除其他外,αs主要由神经元细胞表达,并且似乎与线粒体动态过程密切相关。 αs的过表达对线粒体生理具有毒性作用。 更高2003)。帕金森氏病(PD)是全球第二普遍的神经退行性疾病(Polito等人2016)。在PD病理学期间发生了多种平行和/或先前的变化。鉴于有关该主题的数据量,线粒体功能障碍主要是通过呼吸链破坏并因此增加了活性氧(ROS)的产生,仍被认为在细胞内发病机理中起着不可或缺的作用(Perfeito等人(Perfeito等)2012,Park等。 2018)。 线粒体网络通过平衡的融合和裂变过程积极维持,通过线粒体来协调线粒体降解(Park等人2012,Park等。2018)。线粒体网络通过平衡的融合和裂变过程积极维持,通过线粒体来协调线粒体降解(Park等人2018)。线粒体膜动力学受分子因子范围适当调节。除其他外,αs主要由神经元细胞表达,并且似乎与线粒体动态过程密切相关。αs的过表达对线粒体生理具有毒性作用。 更高αs的过表达对线粒体生理具有毒性作用。更高
…我们发现,当在N2A培养物中添加时,PA63毒素会导致细胞扩散和细胞聚集减少,从而导致凋亡。PA63诱导的细胞损伤的机制包括通过增强碘化丙啶在细胞中的访问来指示的受损细胞膜渗透性。此外,由于肌动蛋白和微管网络均受到损害,导致N2A细胞骨架组织的信号通路受到负面影响。最后,在特定测定中损害了线粒体膜电位。完全,这些改变导致凋亡是PA63的集体毒性作用…