1972 年年底,美国环境保护署署长威廉·鲁克尔豪斯宣布取消 DDT 的登记,实际上禁止在美国使用这种自二战后推出以来最流行的杀虫剂之一。环保主义者称赞 DDT 的禁令是美国环保运动的最高成就,也是自 1962 年雷切尔·卡逊出版《寂静的春天》以来十年环保主义运动的顶峰。卡逊对美国化学农药的滥用及其所造成的大面积生态污染进行了严厉批评,很少有其他书籍能像它一样俘获了美国人的心,并在总统科学顾问委员会和国会引发了广泛的听证会。 1970 年《国家环境保护法》的通过和同年环境保护署 (EPA) 的成立向美国人发出信号,他们的担忧已被听到。DDT 禁令终止了美国最臭名昭著、对环境破坏最大的化学物质之一的使用。还有比这更完美的结局来结束美国农业和公共卫生历史上的黑暗篇章吗?1982 年 5 月,几位观鸟朋友(退休人员)邀请我和他们一起在纽约州罗切斯特附近,在一天内寻找尽可能多的鸟类。重要的一天从凌晨 1 点开始,我们出发寻找夜间活动的猫头鹰和夜鹰。到 4 点 30 分,我们到达了挪威路,这是罗切斯特以西著名的候鸟热点。在清晨的黑暗中,我们听到了一只美洲丘鹬的叫声,
Lubrizol Advanced Materials,Inc。(“ Lubrizol”)希望您找到提供信息的信息,但是您警告您,该材料仅用于信息目的,并且您负责自己对信息的适当使用进行评估。lubrizol不做明示或暗示的陈述,担保或保证,包括对特定目的的适销性或适合性的任何暗示保证,或任何信息的完整性,准确性或及时性。lubrizol不能保证此处参考的材料将如何与其他物质一起执行,以任何方法,条件或过程,任何设备或非实验室环境中的任何方法,条件或过程。在包含这些材料的任何产品商业化之前,您应该彻底测试此类产品,包括产品包装的方式,以确定其性能,功效和安全性。您对您生产的任何产品的性能,功效和安全性负责。lubrizol不承担任何责任,您应承担所有使用或处理任何材料的风险和责任。所有司法管辖区都不得批准任何索赔。任何与这些产品相关的索赔的实体均负责遵守当地法律和法规。未经专利所有人许可,本文中没有任何内容作为许可,建议或诱因,以实践任何专利发明,而您的唯一责任有责任确定是否存在与专利侵犯与所提供信息有关的任何组件的专利侵犯或组合组合有关的问题。您承认并同意您正在使用此处提供的信息自负。如果您对Lubrizol提供的信息不满意,则您的独家补救措施将不使用信息。
临床药理学医师咨询服务时间为周一至周五,上午 8 点至下午 5 点。值班医师在 AHS Insite 页面上的 ROCA 中列出。临床药理学咨询也可通过 Netcare 电子转诊流程和 Specialist Link 获得。我们的服务也在 Alberta Referral Directory 中列出。单击此处了解有关该服务的更多详细信息。
1。Frank Hawking的化学疗法2。Julius P. Kreier和Ristic的寄生原生动物3。Maraia撰写的Julius P. Kreier 4。Wallace Peter 5。Wallace Peter和Geoffrey Pasvol的热带医学和寄生虫学的地图6. 曼森的热带疾病:戈登C.库克7. 的专家咨询基础 热带传染病:理查德·L·Guerrant,大卫·H·沃克和彼得·韦勒8。 Richard L. Guerrant,David H. Walker,Peter F. Weller 9。 F. E. G. Cox 10。的人类寄生虫学历史 P. C. C. Garnham 11。 Bailey&Scott的诊断微生物学12。 Samuel Baron的医学微生物学13。 P. C. Baveja的微生物学教科书14。 Prati Pal Singh和V. P. Sharma编辑的药物和国家重要性的人类寄生虫感染15。 Martin Filion编辑的应用微生物学的定量实时PCRWallace Peter和Geoffrey Pasvol的热带医学和寄生虫学的地图6.曼森的热带疾病:戈登C.库克7.热带传染病:理查德·L·Guerrant,大卫·H·沃克和彼得·韦勒8。Richard L. Guerrant,David H. Walker,Peter F. Weller 9。F. E. G. Cox 10。P. C. C. Garnham 11。Bailey&Scott的诊断微生物学12。Samuel Baron的医学微生物学13。P. C. Baveja的微生物学教科书14。Prati Pal Singh和V. P. Sharma编辑的药物和国家重要性的人类寄生虫感染15。Martin Filion编辑的应用微生物学的定量实时PCR
在其核心方面,使用反射组学改编的技术捕获了剂量递送的细微变化,该技术将传统应用于诊断成像。放射线提取物可再现的定量数据(称为特征),从医学图像(通常对人眼都无法察觉)来构建肿瘤表型或临床结果的预测模型[9,10]。代替对生物标志物的成像,差异为剂量本身。参数,例如灰度共发生矩阵(GLCM)和灰度尺寸区域矩阵(GLSZM)量化剂量模式的复杂性,捕获有关辐射如何在显微镜水平上与组织相互作用的详细信息。这些特征提供了对剂量分布的细微理解,并有可能彻底改变放射治疗计划和评估。这种方法的含义是深刻的。降子学通过鉴定与这些不良反应相关的剂量模式来预测辐射诱导的托克斯型(例如肺炎和骨髓抑制)方面有希望[11,12]。使用术语“代码组”或“ Dosiomic”(2025年1月5日访问)搜索PubMed数据库,检索了34篇论文,其中包括22篇具有清晰端点的原始研究文章。对这些论文的分析显示了广泛的潜在应用:最大的比例(14.7%)着重于放射性肺炎,其次是放射性食管炎(8.8%)和生化衰竭(5.9%)。其他终点,例如骨髓衬里,口服粘膜炎和静态症,较少探索,每个端点占总数的2.9%(图1)。
收到:03.08.2023;修订:30.01.2024;接受:28.05.2024摘要:近年来,由于其出色的特性,沥青修饰的纳米材料已变得广泛。石墨烯及其衍生物是其中的重要例子。因此,进行了这项综述研究,以详细评估石墨烯对沥青的影响。因此,通过研究文献研究,给出了有关石墨烯及其衍生物的一般信息,并评估了石墨烯改装沥青的制备条件。然后,研究了石墨烯对沥青物理和流变学特性的影响。此外,研究了石墨烯修饰对沥青混合物性能的影响以及在复合修饰中使用石墨烯的影响。因此,确定石墨烯可以改善沥青的高温性能,但其对沥青的低温和疲劳性能的影响大多可以忽略不计。另外,已经确定石墨烯会增加沥青混合物的发情电阻,并积极影响沥青混合物的开裂性。
越来越多的证据表明,在没有临床可检测到的DR的糖尿病眼中发生明显的视网膜稀疏。 1,8,9这表明糖尿病性视网膜神经退行性变性(DRN)可能在糖尿病患者中DR的微血管变化之前。然而,对于是否进行糖尿病的诊断知之甚少。我们假设在正常范围内或未诊断糖尿病的个体中,较高的HBA1C水平与视网膜厚度较低有关。与糖尿病患者的糖化血红蛋白(HBA1C)水平(HBA1C)水平和视网膜层厚度之间的关联不同,我们研究了使用UK Biobank数据资源以及比较糖尿病和非糖尿病参与者的HBA1C和视网膜层厚度之间的关系。 据我们所知,这是第一项研究一般社区非糖尿病参与者之间这种关系的研究。 我们还研究了糖尿病状态与视网膜层厚度之间的关联。我们研究了使用UK Biobank数据资源以及比较糖尿病和非糖尿病参与者的HBA1C和视网膜层厚度之间的关系。据我们所知,这是第一项研究一般社区非糖尿病参与者之间这种关系的研究。 我们还研究了糖尿病状态与视网膜层厚度之间的关联。据我们所知,这是第一项研究一般社区非糖尿病参与者之间这种关系的研究。我们还研究了糖尿病状态与视网膜层厚度之间的关联。
这些包括树脂,涂料,粘合剂,电子构成和增塑剂。使用这些模拟化合物的目的是作为BPA的替代方法,因为其使用与其使用相关的潜在健康风险。包含两个由单个碳键连接的苯酚环 - 碳键,双酚类似物具有化学结构,这些化学结构可能会根据附着在环上的取代(原子或原子组)而变化。这些取代基可以显着地在中显着,包括溶解度,毒性和反应性在内的双酚类似物的性质。消费产品中双酚类似物的利用引发了争议,尤其是由于对它们破坏内分泌系统的潜力的担忧。几项研究表明,这些化学物质表现出内分泌干扰作用的可能性。但是,对与双酚类似物相关的潜在健康风险的全面理解需要进一步的研究和研究。2对其效应的检查和对其安全性的评估将有助于更好地理解围绕双酚类似物在各种应用中使用的含义。
估计每μg/kg的95%上限额外额外风险高于零剂量的风险估计值,该剂量与0.0365μg/kg的美国背景剂量相关,其中包括0.02μg/kg - 来自饮食的0.02μg/kg - 来自饮食的天数,以及来自0.0165μg/k的日子(参见至0.0165μg-ke/k k and k。 4.3.4)。b EPA的寿命额外风险每μg/kg天剂量高于背景的剂量越来越高于膀胱高于0.2μg/kg天的非线性(请参阅第4.3.5节)和肺癌(请参阅第4.3.6节)癌症。对于这些健康结果,不应从CSF获得非线性区域的风险估计,而应从这些部分提供的非线性多项式方程中获得。c癌症斜率因子为17.6(mg/kg-day)⁻1(mg/kg-day)和31.7(mg/kg-day)⁻1。d按照氯普伦的毒理学评论中所述计算(美国EPA,2010年),假设正常
In the nearly two decades since the human genome was sequenced, the field of toxicology has undergone a transformation, taking advantage of the explosion in biomedical knowledge and technologies to move from a largely empirical science aimed at ensuring the absence of harmful effects to a mechanistic endeavor aimed at elucidating disease etiology based on an understanding of the biological responses to chemicals (including biochemistry) and the impact on organ系统。然而,机械毒理学的承诺及其对改善人类健康的实际影响之间仍然存在很大的差距。毒理学继续在单个终点,化学物质和生物学靶标的还原主义范式中起作用,而众所周知,生物学和病理学涉及各种各样的复杂相互作用,并额外认识到社会压力也有生物学后果。同时,科学和技术进步的速度导致了大量模型和数据,以理解毒理学暴露,危害和风险,这些毒理学暴露,危害和风险越来越具有挑战性,以评估,整合和解释。,存在着了解如何利用这些新的毒理学领域来实现改善人类健康的期望的长期影响的关键需求。这个基本问题解决了现在或将来发生什么暴露会导致疾病并呼吁进行人类宣传项目的问题。