抽象的幼苗根特性影响了充满挑战的环境下的植物建立。珍珠小米是最热和干旱的谷物作物之一,可在整个撒哈拉以南萨赫勒地区提供重要的食物来源。Pearl Millet的早期根系具有一个单一快速生长的主要根,我们认为这是对Sahelian气候的适应。使用作物建模,我们证明了早期的干旱压力是珍珠小米被驯化的萨赫尔农业部的重要限制。此外,我们表明,珍珠小米的一级根生长与田间条件下的早期水胁迫耐受性相关。遗传学包括全基因组关联研究和定量性状基因座(QTL)方法,可以确定控制此关键根特征的基因组区域。结合基因表达数据,这些基因组区域之一的重新序列和重新注释,确定了谷歌蛋白编码基因PGGRXC9作为候选应力弹性根生长调节剂。对其最接近的拟南芥同源物Atroxy19的功能表征揭示了该谷胱甘肽(GRX)基因进化枝在调节细胞伸长中的新作用。总而言之,我们的研究提出了GRX基因在赋予根细胞伸长并增强珍珠小米对萨赫勒环境的弹性方面的保守功能。
Giulia Zancolli,洛桑大学生态与进化系,瑞士洛桑1015。电子邮件:giulia.zancli@gmail.com; Agostinho Antunes,CIIMAR/CIMAR,海洋与环境研究跨学科中心,Porto de Leix其他Porto de LeixThes Cruise Terminal,AV。 诺顿·德·马托斯将军,S/N,4450-208 Porto,葡萄牙。 电子邮件:aantunes@ciimar.up.pt†第一名合着者。电子邮件:giulia.zancli@gmail.com; Agostinho Antunes,CIIMAR/CIMAR,海洋与环境研究跨学科中心,Porto de Leix其他Porto de LeixThes Cruise Terminal,AV。诺顿·德·马托斯将军,S/N,4450-208 Porto,葡萄牙。电子邮件:aantunes@ciimar.up.pt†第一名合着者。电子邮件:aantunes@ciimar.up.pt†第一名合着者。
摘要。收音机和手机使用振荡载体信号的频率调制(FM)来可靠地传输多路复用数据,同时拒绝噪声。在这里,我们使用遗传编码的蛋白振荡器(GEOS)作为电路中的载波信号来建立该范式的生化类似物,以实现单细胞数据的连续实时FM流。GEOS是由进化多样的思想家庭ATPase和激活因子模块构建的,这些模块在人类细胞中共表达时会产生快速的合成蛋白振荡。这些振荡用作单细胞载体信号,频率和振幅由GEO组件水平和活动控制。我们系统地表征了169个ATPase/Activator Geo对和具有多个竞争激活剂的工程师复合GEO,以开发一个用于波形编程的全面平台。使用这些原理,我们设计了对细胞活性调节地理频率的电路,并使用校准的机器学习模型解码其响应,以证明单个单元中转录和蛋白酶体降解动力学的敏感,实时FM流。GEOS建立一个动态控制的生化载体信号,解锁抗噪声的FM数据编码范式,为动态单细胞分析开辟了新的途径。简介。细胞动态调节不同时间尺度的基因表达,蛋白质定位和信号传导状态,以执行必不可少的生物学功能1-4。虽然基因组,转录组和蛋白质组学方法可以提供单细胞态5-8的快照,但实时遵循单个细胞的轨迹的能力对于理解动态细胞和生物体行为如何编码和功能1,9,10至关重要。这些单细胞动力学通常是使用荧光记者在显微镜下进行跟踪的,其强度或定位为您感兴趣的数据提供了代理10-16。虽然功能强大,但这些工具对扩展单细胞动力学和数据聚合的扩展跟踪构成了挑战,因为任意信号强度在仪器上各不相同,并且对光漂白和噪声17敏感。此外,传统基于荧光的工具生成的信号缺少元数据来识别信号的基本细胞来源,从而使密集的细胞环境中重叠信号的分离变得困难。
w在320至355 nm之间,最大发射波长反映了W对溶剂的暴露。在水溶液(PBS 1X)中测量这种荧光在非结构环境中观察(肽不会在水中形成α-螺旋)和胶束溶液,以研究脂肪样微环境的效果(图6a.3和6b.3)。我们观察到,超过1 mm,即DPC的CMC,DRS-B2的荧光发射最大值和H-B2移动向更短波长(“蓝移”),并显示出荧光强度的强烈增加(高染料移位)。这些光谱变化反映了从亲水性到疏水环境的变化,可以通过埋在DPC胶束的疏水层中的W残基来解释,或者
广泛的害虫,主要是鳞翅目(毛毛虫),双翅目(蚊子和黑蝇)和鞘翅目(甲虫幼虫)(Sanchis 2011)。bt的特征是在孢子形成过程中生产,内毒素蛋白(称为哭泣的蛋白),这些蛋白会积聚并形成晶体包含体。昆虫必须消耗/摄取这些哭泣的蛋白质,才能感受到其作用,直到昆虫死亡。在摄入后,昆虫中肠内的碱性条件会导致晶体的溶解化,从而将其转化为有毒的核心碎片(Sansinenea 2019)。这些有毒蛋白与位于昆虫中肠上皮细胞上的受体(糖蛋白或糖蛋白)结合(Bravo等人2011)。结合后,毒素会改变其构象,从而使其插入细胞膜并形成阳离子选择通道(Bravo等。2013)。当形成足够的这些通道时,几个阳离子进入了细胞。这会导致细胞内部的渗透不平衡,从而导致中肠上皮完整性的丧失。这使碱性肠道果汁和细菌可以通过中肠地下膜,杀死昆虫。当用作喷雾剂时,这些毒素无效地防止昆虫攻击植物的根或植物的内部部分(Sanahuja等人。2011)。这些局限性引发了人们对开发新的遗传修饰植物和细菌表达哭泣和其他BT-杀虫基因的兴趣,以便提供更有效的毒素递送系统来控制这些昆虫(Azizoglu和Karabörklü2021)。2021; Lazarte等。在生物技术技术(例如基因工程)中的持续进展,具有计算生物学的能力,导致了有关BT的发展和发现。在这种情况下,全球各个研究小组对寻找具有新的抑制活性范围和高水平的毒性毒素的新型哭泣毒素非常感兴趣,这是针对虫害的一种替代品,这种毒性毒性具有更高的抗药性水平(Hou等人 2019; Crickmore等。 2021)。 结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。 2017; Azizoglu等。 2020)。 今天的新一代方法,例如模拟和动态研究,2019; Crickmore等。2021)。结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。2017; Azizoglu等。2020)。今天的新一代方法,例如模拟和动态研究,
摘要:内部是蛋白质嵌入到宿主蛋白中的蛋白质,从中切除它们以自催化反应的形式切除。特别是,分裂的内膜分为两个独立的片段,它们在催化过程中重建宿主蛋白。我们最近制定了一种基于毒素 - 内素组合的致病性和抗生素耐药性细菌特异性杀死的新型策略。细菌II型毒素 - 抗毒素系统是蛋白质模块,其中毒素可以引起细胞死亡,而抗毒素抑制毒素活性。尽管我们以前的系统是基于分裂内部(IDNAE)和CCDB毒素,但我们证明IDNAE能够重建四种不同的毒素。通过扩大复杂设置的毒素 - 内元组合的曲目来扩展系统的适用性,我们引入了第二个Intein,IDNAX,该IDNAX是人为分裂的。我们证明IDNAX能够重建四种毒素,并设法降低了其疤痕尺寸以促进其使用。另外,我们通过毒素重建测定法证明了两种Inteins(IDNAE和IDNAX)的正交性,从而为基于这些毒素 - intein模块的复杂设置打开了可能性。这可用于开发特定的抗菌和其他生物技术应用。关键字:毒素 - 抗毒素系统,内部蛋白质,蛋白质剪接,细菌杀死,微生物合成生物学
有机溶剂提取:玉米,大麦,糙米,玉米胚芽,玉米/大豆粉,玉米/大豆混合物,蒸馏剂干谷物(DDG),蒸馏剂和溶解谷物(DDGS),Hominy,Hominy,Hominy,Millet,Millet,Millet,Oat黄豌豆粉
载脂蛋白E(APOE)分布在各种人体组织中,在脂质代谢中起着至关重要的作用。最近的涉及量已经发现了APOE功能的另一个方面,揭示了其在宿主防御细菌感染中的作用。为了评估APOE3和APOE4的抗菌属性,我们使用铜绿假单胞菌和大肠杆菌进行了抗菌测定。探讨了来自大肠杆菌的ApoE同工型和脂多糖(LPS)之间的相互作用,我们进行了多个实验,包括凝胶移位分析,CD和荧光光谱。此外,通过原子分辨率分子动力学模拟,APOE同工型与LPS之间的相互作用进一步确定。LPS的存在诱导了APOE同工型的聚集,这是通过特定淀粉样蛋白染色以及荧光和电子显微镜确认的现象。通过体外和体内实验研究了APOE3/4同工型的清除作用。总而言之,我们的研究确定,与APOE3相比,APOE同工型与LPS具有与LPS的结合,对APOE4观察到更为明显的APED和复杂形成。此外,我们的数据表明,ApoE同工型通过聚集中和LPS,导致在实验动物模型中减少局部炎症。此外,两种同工型都表现出对铜绿假单胞菌和大肠杆菌生长的抑制作用。这些发现为人体中APOE的多功能性提供了新的见解,尤其是在细菌感染过程中其在先天免疫中的作用。
https://doi.org/10.26434/chemrxiv-2025-qj8f5 orcid:https://orcid.org/0000-0001-9193-9193-9053 consemrxiv note content content contemrxiv contem许可证:CC由4.0