许多上述系统可以以颗粒物质的形式存在,其中诸如形态,布置,组成和孔隙率等参数控制其功能特性。颗粒可以表现出内在的内部孔网络。另外,以聚集的形式或填充成颗粒,柱或反应时,会从其填料结构中创建其他颗粒孔隙空间。当将这些不同的孔隙空间组合在一起时,会出现分层孔系统,可以根据运输,反应动力学或动态吸附来量身定制以提供增强的性质。[3,5,14]评估粒子和孔统计的评估,例如粒子和孔径,互连性,折磨或封闭/开放式孔隙率是表征和随后优化此类材料的关键。单个颗粒,它们作为功能结构的团聚形式以及组合的颗粒内和颗粒孔隙空间通常延伸到几个长度尺度上。内部孔的范围从微(<2 nm)到介孔(2 - 50 nm)的状态,直至较大的大孔(> 50 nm),而颗粒间孔通常是较大的大孔。[14]单个颗粒的大小只有几nm到几十µm,它们的团聚和包装结构通常是宏观尺寸的。[5]难度是对所有必要的,函数确定的特征的完整评估,仅使用一种3D表征技术就无法执行。
图 4。(A) 透射显微镜拍摄的黑白玻璃天鹅图像(比例尺:25 µ m)。(B) 透射显微镜拍摄的玻璃二元条、棋盘和圆环结构图像(比例尺:100 µ m)。(C) 和 (D) 黑色和黄色环形图案玻璃管和黑白玻璃管(比例尺:100 µ m)。(E) 带有集成黑色光圈的 3/4 双合和单合成像玻璃光学系统(比例尺:100 µ m)。(F) 集成增材制造玻璃物镜,包括管、支架、光阑和光圈(比例尺:100 µ m)。(G) (F) 中集成物镜的 SEM 图像。(H) 无光圈结构的全透明玻璃物镜的成像性能。(I) (F) 中所示的集成玻璃物镜的成像性能。(J) 图像中的红色和蓝色矩形标记用于对比度比较的区域。
1 Jirsa, MA、Chandler, VW 和 Runkel, AC,1999 年,《明尼苏达州西北部基岩地质图:明尼苏达州地质调查局杂项地图系列,地图 M-92,比例尺 1:200,000。2 Chander, VW、Jirsa, MA 和 Morey, GB,1997 年,《明尼苏达州圣路易斯县北部、Koochiching 县东南部和 Itasca 县东北部的矿产潜力评估:明尼苏达州地质调查局公开文件报告 97-5,9 页,比例尺 1:62,000;最终报告,26 页。3 Peterson, DM 和 Jirsa, MA,编纂者,1999 年,《明尼苏达州东北部圣路易斯县和 Lake 县西部 Vermilion 区基岩地质图和矿产勘探数据:明尼苏达州地质调查局杂项地图系列,地图 M-98,比例尺 1:48,000。 4 Jirsa, MA、Boerboom, TJ 和 Morey, GB,1998 年,《弗吉尼亚角、梅萨比铁矿区、明尼苏达州圣路易斯县基岩地质图:明尼苏达州地质调查局杂项地图系列,地图 M-85,比例尺 1:48,000。5 Miller, JD, Jr. 和 Chandler, VW,1999 年,《中部德卢斯综合体和比弗湾综合体西部、明尼苏达州莱克县和圣路易斯县基岩地质图:明尼苏达州地质调查局杂项地图系列,地图 M-101,比例尺 1:100,000。 6 Boerboom, TJ、Southwick, DL 和 Severson, MJ,1999 年,《明尼苏达州中东部 Aitkin 30 x 60 分钟四边形的基岩地质:明尼苏达州地质调查局杂项地图系列,地图 M-99,2 张图版,比例尺 1:100,000。7 Boerboom, TJ、Southwick, DL 和 Severson, MJ,1999 年,《明尼苏达州中东部 Mille Lacs 30 x 60 分钟四边形的基岩地质:明尼苏达州地质调查局杂项地图系列,地图 M-100,2 张图版,比例尺 1:100,000。8 Meyer, GN,项目经理,1995 年,《明尼苏达州斯特恩斯县地质地图集:明尼苏达州地质调查局县地图集系列,地图 C-10,Pt. A,7 张图版,比例尺 1:100,000 和 1:200,000。9 Jirsa, MA、Chandler, VC、Cleland, JM 和 Meints, JP,1995 年,《明尼苏达州中东部基岩地质图:明尼苏达州地质调查局公开文件报告 95-1》,2 张图版,比例尺 1:100,000。10 Mossler, JH 和 Tipping, RG,编者,2000 年,《明尼苏达州七县双城大都会区基岩地质和结构:明尼苏达州地质调查局杂项地图系列,地图 M-104,比例尺 1:125,000。
(ad) 光学、(eh) 顶视图 SEM;(il) AFM 和 (mp) 175 微米蓝宝石上层 ITO 的导电 AFM 图像,底层 Al 2 O 3 缓冲层厚度不同:(a、e、i、m) 0 nm;(b、f、g、n) 20 nm;(c、g、k、o) 40 nm 和 (d、h、l、p) 60 nm。(a) 至 (d) 中的光学图像的比例尺为 100 μm,其他图像 (e) 至 (p) 的比例尺为 300 nm。
图2:3D PDAC片段模型的开发。a。微流体芯片Identx3,AimBiotech TM的示意图。B.碎屑上胶原蛋白中癌细胞播种的示意图,随后的球体形成。C. PDAC肿瘤球体从单细胞(D0)与芯片上胶原蛋白成熟7天后发育的明亮场显微镜图像(D0)(D7)。比例尺= 100µm。d-f。 Live/Dead Assay的共聚焦显微镜图像(死=红色; Live = Green),带有(d)3D堆栈的Z-Procotity,在第8天芯片,(E-F)3D共聚焦堆栈重建。比例尺= 100µm。g-i。第二次谐波生成(SHG)显微镜图像肿瘤球体(绿色),周围的胶原基质(红色)3D堆栈(G)的Z-Proctions(g),重建了3D图像(H-I)。比例尺= 50µm。
MMC对RH30和RD球体的影响。 a如果在Rh30 -arms-(左)(左)和RD -erms-(右)球体上染色(FN; Green)和胶原I(大肠杆菌;红色),则在不存在MMC处理的情况下冷冻切片(DAPI,cell核,蓝色),比例尺=50μm。 B胶原蛋白I的平均荧光强度(MFI)和球体冷冻切片中的纤连蛋白表达。 c离开。 在所有测试条件下播种在ULA板中的球体的相对形图像,以及井底RH30粘附细胞的细节。 比例尺=右200μm。 如果在RH30和RD球体中用MMC处理的纤连蛋白和胶原蛋白I的染色显示RH30球体下方的粘附细胞的存在。 比例尺=50μm。 d无需MMC处理的RH30和RD球体的形状参数(面积,周长,圆度和坚固),n = 12,Student t -test*p <0.05,** p <0.01,**** p <0.0001。 (为了解释该图传奇中对颜色的引用,读者被转介给本文的网络版本。)MMC对RH30和RD球体的影响。a如果在Rh30 -arms-(左)(左)和RD -erms-(右)球体上染色(FN; Green)和胶原I(大肠杆菌;红色),则在不存在MMC处理的情况下冷冻切片(DAPI,cell核,蓝色),比例尺=50μm。 B胶原蛋白I的平均荧光强度(MFI)和球体冷冻切片中的纤连蛋白表达。c离开。在所有测试条件下播种在ULA板中的球体的相对形图像,以及井底RH30粘附细胞的细节。比例尺=右200μm。如果在RH30和RD球体中用MMC处理的纤连蛋白和胶原蛋白I的染色显示RH30球体下方的粘附细胞的存在。比例尺=50μm。 d无需MMC处理的RH30和RD球体的形状参数(面积,周长,圆度和坚固),n = 12,Student t -test*p <0.05,** p <0.01,**** p <0.0001。(为了解释该图传奇中对颜色的引用,读者被转介给本文的网络版本。)
使用迷你领导的设备和SIBS基板上的印刷图像的原始和剪切的SIBS膜之间垂直失真和变形差异的可视化。a)未拉伸设备的照片,d)印刷图像; b)设备和e)原始SIBS基板上的印刷图像伸展50%。c)设备和f)在剪切的SIBS基板上打印的图像伸展50%。(a – c)中的白色比例尺和(d – f)中的黑色比例尺每个代表1 cm。信用:高级材料(2024)。doi: