图 8 显示了完整 A:D 过程中不同阶段的噪声。在 (a) 处,传感器的模拟前端始终存在白噪声,限制为采样频率的一半。在 (b) 处添加了量化噪声,但仅在高频处。(c) 显示了输出噪声,其中数字滤波器具有较低的截止频率,这对精度有好处;在这种情况下,输出端的噪声与传统模拟传感器与等效滤波器一起使用时的噪声相同。在 (d) 中,输出端使用宽带滤波器,响应时间很快,额外的噪声不是缺点,因为这种类型的输出用于检测超出范围的电流。LEM 数字传感器的多功能性在于能够将 (c) 和 (d) 滤波器类型连接到同一比特流。
光学传感器可以吸收光子并输出数字比特流,这种转换依赖于众多技术的最新进展,包括光学、精密机电、探测器、先进材料、低温技术和信号处理。这些传感器的开发遵循了一条逐渐复杂的道路,利用了这些技术的进步。每一次连续的传感器开发工作都平衡了技术风险、性能和可靠性,以满足日益苛刻的任务目标,但这种技术进步受到预算和进度压力的制约,这些压力通常在选择有效载荷设计方面起着决定性作用,特别是对于 Landsat 6 和 7。尽管如此,更新技术的注入为可能看起来相似的仪器增加了新的内部功能和改进。多年来,空间分辨率、光谱覆盖范围、辐射灵敏度、校准精度和可靠性都得到了升级。
技术信号分析师的职责可能包括: - 利用对信号特性的技术理解来确定信号结构、定义信号参数、识别信号内容以及在射频和数字域内模拟信号行为。 - 在域之间转换信号,并创建处理模型和脚本。 - 报告信号的技术特性并维护知识库。 - 支持访问和后续分析活动。 - 分析与武器和空间系统有关的工程和技术信息。 - 进行目标分析和研究。 - 利用对客户要求的了解来收集、处理、分析和/或报告信号情报信息。 - 识别和分析信号波形(例如武器系统或通信系统)、比特流(例如多路复用器、纠错或仪器系统)和/或协议(例如链路层、网络层或应用层)。 - 开发软件代码以支持使用各种架构和解决方案进行分析和/或处理。 - 在数据库、叙述报告和口头陈述中报告信号参数数据和情报信息。 - 与收集经理、开发人员、分析师和记者合作,优化资源,开发新的解决方案来应对分析挑战,融合多种信息源,并向各种客户提供关键情报。
征文 – IEEE ICCET 2025 主题:下一代多址网络的多维调制过去十年见证了数据吞吐量和连接节点数量的大幅增加,最近的研究也预示了下一代多址网络的这些增长。这些巨大的增长无疑将导致对频谱效率和能源效率日益严格的要求。为了满足这两个要求,多维调制,例如索引调制、基于媒体的调制、基于RIS/反射调制、OTFS和子载波数调制,近年来引起了研究人员的关注。与传统的幅度相位调制方案不同,稀疏调制除了经典的幅度相位星座图之外,还采用了一个或多个调制维度,从而形成更高维的调制方案,这在适当的系统配置下大大提高了频谱效率。通过多维调制,只有一部分媒体资源或功能块会被激活,以形成独特的激活模式。因此,除了由数据星座符号调制的比特流之外,激活模式本身还可用于调制额外的比特流。作为一个处于起步阶段的范例,仍有大量开放的研究问题等待解决,进一步的研究活动对于最终推动稀疏调制进入实际实施阶段至关重要。除了理论研究外,还需要解决实际实施的问题。鉴于上述将多维调制应用于 6G 通信的优势以及剩余的研究问题,本专题旨在汇集来自不同背景的学术界和工业界的顶尖研究人员,以吸引原创和高质量的出版物,解决与多维调制相关的理论和实践问题。鼓励在会议、研讨会或研讨会论文集上发表的论文的扩展版本供考虑。感兴趣的主题我们欢迎涉及以下领域的投稿,但不限于此: 人工智能和学习技术辅助多维调制 大规模 MIMO 和可重构智能表面 (RIS) 辅助多维调制 毫米波中的多维调制、太赫兹和光无线通信 水下光/声通信的多维调制 距离感知和空间频率相关的多维调制 高移动性的多维调制 多维调制的物理安全和保密相关问题 多用户和协作中继网络中的多维调制 基于多维调制的通信系统的性能分析
摘要 随着扩展成为大规模量子 (LSQ) 计算的关键问题,硬件控制系统的资源成本将变得越来越高。本文介绍了一种适用于自旋量子位的信号生成紧凑型直接数字合成 (DDS) 架构,该架构在波形精度和同步通道数量方面是可扩展的。该架构可以以 5 GS/s 的速度产生斜坡、频率梳和任意波形生成 (AWG) 的可编程组合,最坏情况下的数字反馈延迟为 76.8 ns。基于 FPGA 的系统具有高度可配置性,并利用比特流切换来实现可扩展校准所需的高灵活性。该架构还提供 GHz 速率多路复用 I/Q 单边带 (SSB) 调制,用于可扩展反射测量。该架构已在 Xilinx ZCU111 FPGA 上的硬件中得到验证,展示了复杂信号的混合以及多路复用控制和测量的频率梳生成的质量。这种设计的主要优势在于提高了数模转换器 (DAC) 频率斜坡的控制能力,与现有的基于 AWG 的架构相比,内存需求降低了几个数量级。单通道硬件非常紧凑,默认配置下,一个 DAC 通道仅占用 2% 的 ZCU111 逻辑资源,为集成反馈、校准和量子误差校正 (QEC) 留下了大量电路资源。