其他类型无线网络的发展扩大了此类网络的范围和潜在应用。一个主要的例子是 UMTS(或欧洲以外称为 FPLMTS)。UMTS 以各种形式支持广泛的通信服务,从无绳服务到广域蜂窝服务。UMTS 支持的比特率范围最高为 2 Mb/s,主要面向语音和低质量视频以及数据服务。然而,由于频谱限制以及经济原因,UMTS 将无法满足真正的高分辨率多媒体通信的带宽需求。这些通信需要 10 Mb/s 范围内的比特率。所需的带宽在计划的 UMTS 频率范围内不可用,并且这种带宽的用户成本可能会过高。此外,目前尚不清楚企业或其他组织场所之外是否存在对这种高速服务的需求。在场所内,不与 UMTS 共享频谱的短距离无线网络作为多媒体无线网络的解决方案更具吸引力和灵活性。 HIPERLAN 满足了这一需求。下图阐明了 HIPERLAN 与 UMTS 之间的关系:
其他类型无线网络的发展扩大了此类网络的范围和潜在应用。一个主要的例子是 UMTS(或欧洲以外称为 FPLMTS)。UMTS 以各种形式支持广泛的通信服务,从无绳服务到广域蜂窝服务。UMTS 支持的比特率范围最高为 2 Mb/s,主要面向语音和低质量视频以及数据服务。然而,由于频谱限制以及经济原因,UMTS 将无法满足真正的高分辨率多媒体通信的带宽需求。这些通信需要 10 Mb/s 范围内的比特率。所需的带宽在计划的 UMTS 频率范围内不可用,并且这种带宽的用户成本可能会过高。此外,目前尚不清楚企业或其他组织场所之外是否存在对这种高速服务的需求。在场所内,不与 UMTS 共享频谱的短距离无线网络作为多媒体无线网络的解决方案更具吸引力和灵活性。 HIPERLAN 满足了这一需求。下图阐明了 HIPERLAN 与 UMTS 之间的关系:
其他类型无线网络的发展扩大了此类网络的范围和潜在应用。一个主要的例子是 UMTS(或欧洲以外称为 FPLMTS)。UMTS 以各种形式支持广泛的通信服务,从无绳服务到广域蜂窝服务。UMTS 支持的比特率范围最高为 2 Mb/s,主要面向语音和低质量视频以及数据服务。但是,由于频谱限制以及经济原因,UMTS 无法满足真正的高分辨率多媒体通信的带宽需求。这些需要 10 Mb/s 范围内的比特率。所需的带宽在计划的 UMTS 频率范围内不可用,并且这种带宽对用户的成本可能过高。此外,目前尚不清楚企业或其他组织场所之外是否存在对这种高速服务的需求。在场所内,不与 UMTS 共享频谱的短距离无线网络作为多媒体无线网络解决方案更具吸引力和灵活性。HIPERLAN 满足了这一需求。下图阐明了 HIPERLAN 和 UMTS 之间的关系:
其他类型无线网络的发展扩大了此类网络的范围和潜在应用。一个主要的例子是 UMTS(或欧洲以外称为 FPLMTS)。UMTS 以各种形式支持广泛的通信服务,从无绳服务到广域蜂窝服务。UMTS 支持的比特率范围最高为 2 Mb/s,主要面向语音和低质量视频以及数据服务。然而,由于频谱限制以及经济原因,UMTS 将无法满足真正的高分辨率多媒体通信的带宽需求。这些通信需要 10 Mb/s 范围内的比特率。所需的带宽在计划的 UMTS 频率范围内不可用,并且这种带宽的用户成本可能会过高。此外,目前尚不清楚企业或其他组织场所之外是否存在对这种高速服务的需求。在场所内,不与 UMTS 共享频谱的短距离无线网络作为多媒体无线网络的解决方案更具吸引力和灵活性。 HIPERLAN 满足了这一需求。下图阐明了 HIPERLAN 与 UMTS 之间的关系:
数据包结构 ADSL 具有分组传输模式,数据包含在帧结构中,可以是高级数据链路控制 (HDLC) 格式,也可以是异步传输模式格式。在题为“异步传输模式系统 - ATM”的面板中,有更多关于 ATM 的内容。典型的帧由两个报头字节和最多 1600 个数据字节组成,由两个标志字节分隔。由于 ATM 广泛用于在电视演播室和制作区域内传输数字信号,因此它应该用于 DSL 系统中的类似视频需求是合乎逻辑的。虽然为 ATM 定义了五个“适配”层,每个层都有前缀 AAL,但只有 AAL l 和 AAL5 用于电视分发。AALJ 层是为恒定比特率 (CBR) 制作分发而定义的,而 AAL5 是为消费者质量 VOD 可变比特率 (VBR) 系统而定义的。每个 MPEG-2 传输流 (TS) 数据包由 204 个字节组成,而每个 A TM 单元仅包含 55 个字节。单独的面板中有更多相关信息。
FS3000 包括一个 I 2 C 数字双线接口,该接口带有一条双向数据线 (SDA) 和一条时钟线 (SCL)。这两条线为开漏,并通过两个上拉电阻 (Rp) 连接到电源电压。FS3000 在 I 2 C 总线上作为从设备运行,支持 100kHz 和 400kHz 比特率。
TFP401/401A 从 DVI 发送器接收时钟参考,其周期等于像素时间 t pix 。此时钟的频率也称为像素速率。由于 Rx[2:0] 上的 TMDS 编码数据每 8 位像素包含 10 位,因此 Rx[2:0] 串行比特率为像素速率的 10 倍。例如,支持刷新率为 60 Hz 的 UXGA 分辨率所需的像素速率为 165 MHz。TMDS 串行比特率为像素速率的 10 倍,即 1.65 Gb/s。由于此高速数字比特流在长距离(3-5 米)的三个独立通道(或双绞线)上传输,因此无法保证数据流与输入参考时钟之间的相位同步。此外,三个数据通道之间通常存在偏差。TFP401/401A 对输入数据流采用 4 倍过采样方案,以实现可靠的同步,通道间偏差容差高达 1-t pix。由于反射和外部噪声源导致时钟和数据线上的累积抖动也是高速串行数据传输的典型特征;因此,TFP401/401A 设计具有高抖动容差。
实时流媒体的大量增长,尤其是以游戏为中心的内容,导致全球带宽消费的总体增长。某些服务看到它们在高峰消费时的质量降低,从而降低了内容的质量。这种趋势产生了与根据网络和服务条件优化图像质量有关的新研究。在这项工作中,我们在真实的多站点5G环境上提出了游戏流的用例优化。本文概述了用例的虚拟化工作流程,并提供了用于模拟的应用程序和资源的详细说明。此仿真测试了基于人工智能(AI)算法的添加,对服务的优化,从而在不同的工作条件下以良好的经验(QOE)确保内容的交付。引入的AI基于深度强化学习(DRL)算法,该算法可以灵活地适应多媒体工作流程可能面临的不同条件。也就是说,通过纠正措施调整流量比特率,以优化实时多站点方案中内容的Qoe。这项工作的结果表明了我们如何最大程度地减少内容损失,以及与没有在系统中集成的优化器的服务相比,获得具有较高比特率的高视听性多媒体质量结果。在多站点的环境中,我们在阻滞效率方面取得了20个百分点的提高,并且在阻滞损失方面也有15个百分点。
为了有效地覆盖服务区,通常需要使用多个发射器。当单个发射器的覆盖范围较小时,应使用单个射频信道,以避免需要多信道接收器。在这种情况下,单独的发射器可以顺序或同时运行。在后一种情况下,通常使用偏移载波频率的技术,偏移量适合所采用的编码系统。还需要补偿因各个固定电话线到发射器的特性而导致的调制信号延迟差异。一种方法是通过无线寻呼信道进行代码位同步。需要有关此同步方法允许的比特率的信息。
由于对集成的光电电路的需求日益增长和较高的光学通信带宽,光学解体器在电信行业的全光设备中具有很大的潜力[1]。对数据速率的越来越多的需求激发了对多重技术的需求[2]。可以使用以下技术方法来创建光学反复传动器:Y分支设备[3,4],Mach-Zehnder干涉仪(MZI)[5],燃烧的波导侧壁光栅[6]和多模层干扰(MMI)COUPLERS [7,8]。为了提高数据传输比特率,波长多路复用(WDM)是广泛使用的技术之一[1]。通过减少峰值波长之间的距离,可以利用更多的通道来利用单个光谱带。