近年来,量子图像处理在图像处理领域引起了广泛关注,因为它有机会将海量图像数据放入量子希尔伯特空间。希尔伯特空间或欧几里得空间具有无限维度,可以更快地定位和处理图像数据。此外,多种类型的研究表明,量子过程的计算时间比传统计算机更快。在量子域中编码和压缩图像仍然是一个具有挑战性的问题。从文献调查中,我们提出了一种 DCT-EFRQI(直接余弦变换量子图像的高效灵活表示)算法来有效地表示和压缩灰度图像,从而节省计算时间并最大限度地降低准备的复杂性。这项工作旨在使用 DCT(离散余弦变换)和 EFRQI(量子图像的高效灵活表示)方法在量子计算机中表示和压缩各种灰度图像大小。使用 Quirk 模拟工具设计相应的量子图像电路。由于量子比特数的限制,总共使用 16 个量子比特来表示灰度图像的系数及其位置。其中,8 个量子比特用于映射系数值,其余量子比特用于生成相应系数的 XY 坐标位置。理论分析和实验结果表明,与 DCT-GQIR、DWT-GQIR 和 DWT-EFRQI 相比,所提出的 DCT-EFRQI 方案在 PSNR(峰值信噪比)和比特率方面提供了更好的表示和压缩。
摘要 摘要 在过去的几十年中,已经开发出了许多量子算法。阻碍这些算法广泛实施的主要障碍是可用量子计算机的量子比特规模太小。盲量子计算 (BQC) 有望通过将计算委托给量子远程设备来处理此问题。在这里,我们介绍了一种新颖的约束量子遗传算法 (CQGA),该算法以非常低的计算复杂度选择约束目标函数(或庞大的未排序数据库)的最佳极值(最小值或最大值)。由于约束经典遗传算法 (CCGA) 收敛到最优解的速度高度依赖于最初选择的潜在解的质量水平,因此 CCGA 的启发式初始化阶段被量子阶段取代。这是通过利用约束量子优化算法 (CQOA) 和 BQC 的优势实现的。所提出的 CQGA 用作上行链路多小区大规模 MIMO 系统的嵌入式计算基础设施。该算法在考虑不同用户目标比特率类别的同时,最大化上行大规模 MIMO 的能量效率 (EE)。仿真结果表明,建议的 CQGA 通过仔细计算每个活跃用户的最佳发射功率,使用比 CCGA 更少的计算步骤,实现了能量效率的最大化。我们证明,当整体发射功率集或总体活跃用户数量增加时,与 CCGA 相比,CQGA 始终执行较少数量的生成步骤。例如,如果我们考虑将总体活跃用户数量 () 设置为 18 的场景,CQGA 会使用较少的生成步骤数(等于 6)找到最优解,而 CCGA 则需要更多的生成步骤数,达到 65。
-A - A/D 模拟到数字 A&T 架构和传输(DSL 论坛委员会,以前称为 ATM) A/TT 模拟连接中继(TIA-646-B) AAA 身份验证、授权和记帐 AAC 高级音频编码 AACCH 辅助模拟控制通道 AAL ATM 适配层 AAL(D) 模拟 PSTN 接入线路(模拟 PBX 接口,TIA-646-B) AAL5-CU ATM 适配层 5 复合用户 AAP 替代批准程序 AASO 高级音频服务器覆盖(包) AASS 高级音频服务器集(包) AAU 高级音频包 AAV 身份验证算法版本 ABAC 聚合承载接纳控制 AbC 信函批准 ABM 聚合承载测量 ABNF 增强巴科斯诺尔范式 ABR 平均比特率 ABT 自适应块变换 AC 咨询通告 AC 交流电 AC 身份验证中心 AC 自动配置(DSL 论坛) AC 自动回拨 ACA 自适应信道分配 ACBO 自动跨波段操作 ACC 模拟控制信道 ACCH 关联控制信道 ACD 自动呼叫分配 ACE 高级编码效率 ACELP 自适应 CELP ACF 身份验证控制功能 ACG 自动代码间隙 ACIL 独立科学、工程与测试公司协会 ACK 确认 ACKS 确认 ACM 地址完整消息 ACOS IEC 安全咨询委员会 ACR 绝对类别评级 ACR 备用运营商路由 ACR 匿名呼叫拒绝 ACRE 授权和呼叫路由设备 ACS 自动配置服务
摘要。目的。信息传输速率 (ITR) 或有效比特率是一种流行且广泛使用的信息测量指标,尤其适用于基于 SSVEP 的脑机 (BCI) 接口。通过将速度和准确性结合为单值参数,该指标有助于评估和比较不同 BCI 社区中的各种目标识别算法。为了计算 ITR,通常假设输入分布均匀,并且通道模型过于简单,该模型无记忆、静止且本质上对称,字母大小离散。因此,为了准确描述性能并启发未来 BCI 设计的端到端设计,需要更彻底地检查和定义 ITR。方法。我们将视网膜膝状体视觉通路承载的共生通信介质建模为离散无记忆通道,并使用修改后的容量表达式重新定义 ITR。我们利用有向图的结果来表征由于新定义导致的转换统计不对称与 ITR 增益之间的关系,从而得出数据速率性能的潜在界限。主要结果。在两个著名的 SSVEP 数据集上,我们比较了两种尖端目标识别方法。结果表明,诱导的 DM 通道不对称对实际感知的 ITR 的影响大于输入分布的变化。此外,证明了新定义下的 ITR 增益与通道转换统计的不对称呈反比。进一步表明,单独的输入定制可以带来感知的 ITR 性能改进。最后,提出了一种算法来寻找二分类的容量,并进一步讨论了通过集成技术将这些结果扩展到多类情况。意义。我们期望我们的研究结果将有助于表征高度动态的 BCI 通道容量、性能阈值和改进的 BCI 刺激设计,以实现人脑与计算机系统之间更紧密的共生,同时确保有效利用底层通信资源。
A/A 空对空(战斗) AAA 先进天线和阵列(桑德斯组) AAA 先进航空电子结构 AAAM 先进空对空导弹 AAC 授权和访问控制(互联网工作组) AACU 先进航空电子加密单元 AAED 先进机载消耗性诱饵(海军计划,ALE-50) AAG 先进音频编码(MPEG 文件扩展名) AAIC 航空电子装备整合委员会(SAE) AAL ATM 适配层 AASAS 先进机载态势评估系统 AAST 先进航空电子子系统和技术(海军计划) AATR 航空电子结构技术评审 AAU 备用访问单元 AAW 防空作战 ABET 基于 Ada 的测试环境 ABF 自适应波束形成器 ABI 应用二进制接口 ABI 航空电子总线接口 ABIST 自主内置自检 ABL 机载激光器(计划) ABM 应答存储器 ABR 可用比特率(ATM 服务类) ACDC 先进通信设备公司 ACDC 交流电转直流电(转换器) ACE 访问控制实体 ACE 先进计算环境 ACEM 先进通用电子模块(程序) ACF 访问控制设施 ACL 访问控制列表 ACM 计算机协会 ACP 先进通用处理器 ACPI 先进配置和电源接口(用于 OS 电源管理) ACR 允许单元速率(ATM ABR) ACS 访问控制系统 ACS 自适应计算系统(DARPA 程序) ACTD 先进概念技术开发(程序) ACTS 先进通信技术卫星(NASA) ACVC Ada 编译器验证能力 ACWG 航空电子通用工作组 A/D 模拟转数字(转换器) AD 访问描述符 AdaIC Ada 信息交换所 ADARS 先进防御性航空电子响应策略 ADARTS 基于 Ada 的实时系统设计方法 ADAS 先进分布式孔径系统(在 JSF 程序上) ADAS 架构设计和评估系统(来自 Cadre Technologies) ADB 苹果桌面总线ADI 模拟设备公司
产品规格 产品名称 室内 AI 摄像机 室外 AI 摄像机 (IP66) 型号 SI7201TX2 SI7220TX2 电源 DC12V 或 PoE (IEEE802.3at) 防水外置电源 (单独出售) 功耗 DC12V:30W 或以下 PoE:25W 或以下 DC12V:30W 或以下 PoE:25W 或以下 工作温度 -10°C ~ +50°C -20°C ~ +50°C 存储温度 -15°C ~ +60°C -25°C ~ +60°C 音频输入/输出 内置麦克风 / LINE-OUT 连接器(机壳内) 内置麦克风 / LINE-OUT 连接器(机壳内) 视频输出 HDMI 1.4 1ch。输出类型 D 机壳连接器 HDMI 1.4 1ch。输出类型 D 外壳连接器 SD 端口 microSD 插槽 microSD 插槽 图像传感器 2.13M 像素 1/2.8” CMOS 图像传感器 2.13M 像素 1/2.8” CMOS 图像传感器 最低照度 0.1 lx 0.1 lx 镜头 90°/60°/37°/18° 出厂设置 90°/60°/37°/18° 出厂设置 分辨率 全高清 1920 x 1080 全高清 1920 x 1080 高清 1280 x 720 高清 1280 x 720 VGA 640 x 480 VGA 640 x 480 帧率 H.264 1 ~ 30FPS H.264 1 ~ 30FPS JPEG 1 ~ 30FPS JPEG 1 ~ 30FPS 比特率 64Kbps ~ 12,228Kbps 64Kbps ~ 12,228Kbps 视频编解码器 JPEG/H.264 JPEG/H.264 音频编解码器 G.711 μ-law G.711 μ-law LAN RJ-45 100Base-TX /1000Base-T WiFi 802.11ac 100Base-TX /1000Base-T WiFi 802.11ac 通信模块 内置 LTE 通信模块 NTT Docomo Xi 兼容 内置 LTE 通信模块 NTT Docomo Xi 兼容 NVIDIA Jetson TX-2 Jetson TX-2 RAM 8GB 128bit LPDDR4 8GB 128bit LPDDR4 OS L4T 28.2.1 64bit L4T 28.2.1 64bit 记录介质 microSDHC 32GB / microSDXC 62GB~512G microSDHC 32GB / microSDXC 62GB~512G 注:请注意,工业级 512GB SDXC 尚未发售。 外形尺寸(主体) W80mm x D207mm x H80mm(不包括突起部分) W120mm x D330mm x H100mm(不包括突起部分) 重量(主体) 1.15Kg 1.85Kg
卫星串行链路用于更高的数据吞吐量和更高频率的电信有效载荷,这需要更多地使用机载计算机处理,因此光学互连成为卫星上数字有效载荷的首选解决方案。特别是,数据速率的增加加剧了与电气域互连相关的挑战,其中传输距离随着比特率的增加而显著缩短。这既限制了 ASIC 的 SerDes 通道的覆盖范围,也导致需要更复杂的调制格式和更多的 DSP,这两者都会导致功耗增加。光学互连还受益于重量减轻和对 EMI 的免疫力。到目前为止,卫星有效载荷的光学收发器一直专注于基于中板 VCSEL 的技术,第一代收发器的速度为 12.5 Gb/s 1 已在轨道上演示,第二代设备的目标是 25 Gb/s,预计将在下一步演示。然而,与地面数据中心的趋势类似,数据速率现在正在增加到对直接调制 VCSEL 具有挑战性的水平,而转向 O 波段和 C 波段更常见的通信波长也带来了许多优势。共封装光学器件 (CPO) 是地面数据中心应用的新兴标准,有机会为卫星有效载荷采用类似的架构。CPO 的目标是将光收发器集成到非常靠近功能性 ASIC/FPGA 的位置,从而能够使用功率较低的短距离 SerDes 并促进更高数据速率的传输,同时保持信号完整性并减轻 EMI 效应。通过 ESA 合同“ProtoBIX”,MBRYONICS 和 imec 正在开发一种基于硅光子的收发器,该收发器从头开始设计,用于部署在卫星有效载荷上。共封装方法采用单独的 Rx 和 Tx 光子集成电路 (PIC),以实现电吸收调制器 (EAM) 和光电二极管 (PD) 的高性能。 EAM 的优势在于它们比环形调制器具有更大的光带宽,而且与基于环形谐振器的设计相比,它们不需要波长调谐。Tx 和 Rx PIC 在 imec 的 iSiPP200 平台上制造,而定制的抗辐射调制器驱动器则在 IHP SG13RH SiGe BiCMOS 工艺 2 上设计和制造。收发器使用 NRZ 调制时的数据速率为每通道 56 Gb/s。通过详细分析,NRZ 格式被选为最有前景的格式,因为它允许使用直接驱动概念,其中 ASIC/FPGA SerDes 驱动调制器驱动器并消除了 CDR 和重定时,同时也消除了对 DSP 的需求。此外,与 56 GBd NRZ 相比,28 GBd PAM4 所需的线性度会导致显著的功率损失。
