摘要 — 室内定位和情境感知正成为各种应用的两项关键技术。最近,通过采用超宽带 (UWB) 技术,人们已经实现了厘米级精度和低功耗的实时定位系统。自 2015 年以来,Decawave 已生产出商用 UWB 集成电路,利用飞行时间测量技术来估计两个代理之间的距离。这项工作介绍了两台 Decawave 收发器(DW1000 和 2020 年发布的新款 DW3000)之间的性能研究。测试空间包括视距内区域和由 UWB 无线电信号反射到各种障碍物而引起的各种非视距条件。最后,我们分析了不同配置下的功耗,并对两台设备进行了比较。结果表明,两者在 1 米以上的测量范围内具有相似的精度,而考虑到较短的距离,DW3000 的平均性能要好 33.2%。此外,新收发器在实时测量过程中的功耗降低了近 50%,平均值达到 55 mW。索引术语 — 超宽带技术、超宽带通信、物联网、室内定位、功耗
摘要 :增材制造 (AM) 是一项尖端技术,可提供高达 100% 的材料效率和显著的重量减轻,这将对飞机燃料消耗产生积极影响,并且具有很高的设计自由度。因此,许多航空航天公司都在考虑实施 AM,这要归功于这些好处。因此,本研究的目的是帮助航空航天组织在不同的 AM 技术中进行选择。为此,通过半结构化访谈收集了 (8) 位 AM 领域专家的原始数据,并与二手数据进行交叉引用,以确定在选择用于航空航天应用的 AM 设备时需要考虑的关键因素。专家们强调了四种 AM 技术:激光粉末床熔合 (LPBF)、电子束粉末床熔合 (EBPBF)、线弧 AM (WAAM) 和激光金属沉积 (LMD),认为它们最适合航空航天应用。本研究的主要成果是开发了一个比较框架,帮助公司根据其主要业务或特定应用选择 AM 技术。
异常定位,目的是将图像中的异常区域分割出来,这是由于种类繁多的异常类型而具有挑战性的。现有方法通常是通过将整个图像作为整体而却很少付出的努力来学习局部分布来训练深层模型,这对于这项Pixel Prescerise任务至关重要。在这项工作中,我们提出了一种基于补丁的方法,可以适当考虑全球和本地信息。更具体地说,我们采用本地网络和全球网络分别从任何单个贴片及其周围来提取特征。全球网络经过训练,其目的是模仿本地功能,以便我们可以从上下文中轻松检测其功能不匹配时。我们进一步引入了不一致的异常检测(IAD)头和一个失真异常检测(DAD)头,以足够的时间发现全球和局部特征之间的差异。源自多头设计的评分函数有助于高精度异常定位。在几个现实世界数据集上进行了广泛的实验表明,我们的方法优于最大的竞争对手,而竞争对手的差距足够大。
犬乳腺肿瘤具有作为转化肿瘤学中自然发生的乳腺癌模型的巨大潜力,因为它们与人类乳腺肿瘤具有相同的环境风险因素、关键组织学特征、激素受体表达模式、预后因素和遗传特征。我们旨在开发允许对犬乳腺肿瘤 (CMT) 进行功能分析的体外工具,因为我们对驱动这些异质性肿瘤生长的潜在生物学了解甚少。我们建立了来自 16 名患者的 24 个类器官系的长期培养,包括来自正常乳腺上皮或良性病变的类器官。CMT 类器官重现了它们所来自的原发组织的关键形态学和免疫组织学特征,包括激素受体状态。此外,遗传特征(驱动基因突变、DNA 拷贝数变异和单核苷酸变异)在肿瘤-类器官对中得到保留。我们展示了 CMT 类器官如何成为体外药物测定的合适模型,并可用于研究特定突变是否可预测治疗结果。此外,我们可以对 CMT 类器官进行基因改造,并使用它们进行汇集的 CRISPR/Cas9 筛选,其中文库表示得到准确维护。总之,我们提出了一个强大的 3D 体外临床前模型,可用于转化研究,其中可以从同一患者体内繁殖来自正常、良性和恶性乳腺组织的类器官,以研究肿瘤发生。
Smid 等人(2020 年)进行了一项系统评价,以表征贝叶斯和频率估计在小样本量 SEM 中的表现。在手动筛选 5050 项研究后,仅选定 27 项来回答他们的研究问题。进行系统评价需要付出巨大的筛选努力。这种筛选工作使证据综合成为一项极具挑战性的任务。开源 AI 辅助筛选工具可以潜在地减少工作量:系统评价的主动学习(ASReview;van de Schoot 等人,2020 年)。在 ASReview 中,研究人员与主动学习模型交互筛选摘要。根据研究人员的决策(相关与不相关),该模型会迭代更新其对剩余摘要的相关性预测。通过优先考虑最有可能相关的文章(即基于确定性的主动学习),ASReview 最大限度地减少了研究人员需要筛选的文章数量,同时仍能识别出大多数相关文章。手动筛选和自动优先排序出版物的过程会产生一组相关出版物。作为一个例子,ASReview 被应用于 Smid 等人(2020 年)确定的 5050 篇研究的全部集合。理想的表现被定义为最大限度地识别 Smid 等人最初确定的 27 篇相关文章,同时最大限度地减少研究人员需要筛选的文章数量。相关性预测由主动学习模型进行,该模型使用朴素贝叶斯或逻辑回归作为分类器。对于第一个预测,ASReview 需要一些示例文章。对每个分类器应用了 27 次 ASReview,使用每篇相关文章作为示例文章一次,并与一篇随机的不相关文章配对。如图 1 所示,贝叶斯和逻辑回归模型都发现超过 80%
该课堂模拟策略旨在针对7年级的社会研究标准E1分析不同的经济体系。该策略可用于介绍标准或在课后增强学生的理解。为了模拟指挥,市场和混合经济体,学生将假装他们是教师的员工在集会线上工作。此模拟与至少三个小组最有效,每组中有五到十名学生,但是可以对其进行修改以满足班级的特定需求。应该安排学生的桌子或桌子,以便他们靠近所有小组成员。如果老师正在以在线格式进行指导,则学生可以在Jamboard等数字白板上进行合作。每个学生都会收到一个数字,以与他们在汇编线上分配的作业相对应。在引入活动期间,最好将图纸显示在板上,并与学生一起浏览每个部分,以确保他们了解自己的工作需要什么。在此特定的模拟中,学生们为老师的公司“珍贵的幼崽”绘制幼犬,但是,可以根据教师和学生的兴趣来修改这。请参阅随附的图像,以查看如何为组装线划分图形。
本研究旨在对比研究不同用途鞋面革的粒面特性。因此,三家不同的鞋业公司提供了六种不同类型的鞋面革(裂纹革、仿古革、漆皮、纳帕革、磨砂革、印花革)。对厚度相似的皮革进行拉伸强度和断裂伸长率(TS EN ISO 3376)、单边和双边撕裂强度(TS EN ISO 3377-1、TS EN ISO 3377-2)、抗裂和抗破裂性(TS 4137 EN ISO 3378、TS EN ISO 3379)、抗屈挠性(TS EN ISO 5402-1)以及干湿摩擦牢度试验(TS EN ISO 11640)。研究结果提供了有关不同鞋面革类型的物理强度和产品性能的信息。对数据进行了比较评估,并评估了鞋面革类型对质量和性能的影响。
抵抗[5]。尽管过程优化了重大的优化工作,但由PBF-LB和PBF-EB生产的316升零件仍然无法满足最佳功能性能所需的表面质量要求。据报道,由PBF-LB和PBF-EB产生的316L部分的典型表面粗糙度(RA)值分别为〜10 µm [9]和〜30 µM [10]。在PBF-LB和PBF-EB之间获得的表面粗糙度的巨大差异是无关的。在比较PBF-LB和PBF-EB时,已经报道了TI6AL4V的可比较表面粗糙度值。对于PBF-LB标本,在构建方向上测量了〜8 µm的RA,而对于PBF-EB,观察到RA为〜23 µm [11]。无论相关的AM过程如何,印刷的部分通常都需要后处理才能实现所需的表面
来源:Dorrucci 和 Freier (2023),基于欧盟委员会数据和欧洲中央银行体系公共财政工作组的估计。根据 Coeuré 报告 (2021),法国在 RRF 下的现金支出。注:实线表示德国 (DE)、法国 (FR)、意大利 (IT) 和西班牙 (ES) 在 RRF 期间 (2021-26) 预计吸收的 RRF 资金。虚线表示这四个国家实际吸收的欧盟过去在欧盟多年期财政框架 (MFF) 下提供的资源。吸收率是支付给成员国的金额占该国可获得的欧盟总预算的百分比。第 1 年是相应计划的第一年,即 2007-13 MFF 为 2007 年,2014-20 MFF 为 2014 年,RRF 为 2021 年。第 1 年包括 RRF 下的预融资。2007-13 年 MFF(黑色虚线)的吸收率显示为四个国家的平均值,包括欧洲区域发展基金 (ERDF)、凝聚基金 (CF) 和欧洲社会基金 (ESF),而 2014-20 年 MFF 仅包括 ERDF 和 CF。2014-20 年 MFF 下的数据是 2021 年(图表中的第 8 年)的临时数据