图 5.6(b) 继电器处 b -c 故障时 So 和 Sr 的幅值平方。70 图 5.7(a) 继电器处 c -a 故障时 Sbc 和 Sab 之间的角度差。71 图 5.7(b) 继电器处 c -a 故障时 So 和 Sr 的幅值平方。71 图 5.8(a) 继电器后方 a -b 故障时 Sbc 和 Sab 之间的角度差。72 图 5.8(b) 继电器后方 a -b 故障时 So 和 Sr 的幅值平方。72 图 5.9(a) 继电器后方 b -c 故障时 Sbc 和 Sab 之间的角度差。73 图 5.9(b) 继电器后方 b -c 故障的 So 和 Sr 幅值平方。73 图 5.10(a) 继电器后方 c -a 故障的 Sbc 和 Sab 之间的角度差。74 图 5.10(b) 继电器后方 c -a 故障的 So 和 Sr 幅值平方。74 图 5.11(a) 距离继电器 50 km 的 a -b -c 故障的 Vxy 和 Vzy 之间的角度差。76 图 5.11(b) 距离继电器 50 km 的 a -b -c 故障的 So 和 Sr 幅值平方。76 图 5.12(a) 距离中继器 100 km 的 -b -c 故障的 Vxy 和 Vzy 之间的角度差。77 图 5.12(b) 距离中继器 100 km 的 -b -c 故障的 So 和 Sr 的幅值平方。77 图 5.13(a) 距离中继器 190 km 的 -b -c 故障的 Vxy 和 Vzy 之间的角度差。78 图 5.13(b) 距离中继器 190 km 的 -b -C 故障的 So 和 Sr 的幅值平方。78 图 5.14(a) 距离中继器 50 km 的 -g 故障的 S1 和 S2 之间的角度差。80 图 5.14(b) 距离中继器 50 公里的 -g 故障的 So 和 Sr 的震级平方。8180 图 5.15(a) 距离中继器 100 公里的 b -g 故障的 S1 和 S2 之间的角度差。81 图 5.15(b) 距离中继器 100 公里的 b -g 故障的 So 和 Sr 的幅度平方。
在设计ECG系统时,主要问题之一是功耗,尤其是用于移动和可穿戴设备。本文提出了DTLC适用于使用具有负面偏置的双尾比较器的低端和高端应用程序,以改善使用Mentor图形建模的ECG信号监测系统。使用180nm CMOS技术的EDA工具集成的电路设计,以0.8V的电源提高了电力消耗,而不会下降汽车的性能。参数(包括功耗和功耗产品(PDP))以20 kHz的时钟频率从1.33μW降低到12.5 PW,而PDP降低到27°C时的0.251 AJ,可以改善功耗(PDP)。这些优化使所提出的比较器非常适合低功率,高性能ECG系统,尤其是在便携式和可穿戴的医疗设备中,在这些设备中,作为资源利用和交付的精度是重要因素。设计为公司的数字过渡提供了一个声音平台。心脏信号监测中的类似物到数字转换器(ADC)作为客户对医疗行业中节能声音元素的需求的增长。通过这种方式,功率释放效率得到提高,并且过多的能耗受到限制。根据准确性要求,拟议的比较器可以视为最适合现代心电图应用程序的比较。
用于搜索的算法在 [29] 中进行了描述。利用这种思想,我们获得了几个问题的量子算法。第一个问题是字符串排序问题。假设我们有 n 个长度为 k 的字符串。众所周知 [30],没有量子算法可以比 O(nlogn) 更快地对任意可比较对象进行排序。同时,一些研究人员试图改进隐藏常数 [31,32]。其他研究人员研究了空间有界的情况 [33]。我们专注于对字符串进行排序。在经典情况下,我们可以使用一种比任意可比较对象排序算法更好的算法。对于有限大小的字母表,基数排序具有 O(nk) 查询复杂度 [34]。它也是经典(随机或确定性)算法的下限,即 Ω(nk)。我们的字符串排序问题的量子算法的查询复杂度为 O(n(logn)·√
LM161、LM261、LM361 高速差分比较器概述 LM161、LM261、LM361 是一款超高速差分输入、互补 TTL 输出电压比较器,其特性优于 SE529、NE529,可作为后者的引脚对引脚替代品。该器件已针对更高的速度性能和更低的输入失调电压进行了优化。通常,对于 5 mV 至 500 mV 的过驱动变化,延迟变化仅为 3 ns。它可由运算放大器电源供电(例如 15V)。提供具有最大偏移的互补输出。应用包括磁盘文件系统中的高速模拟数字转换器和过零检测器。
高精度,连续模拟比较器被广泛用于信号检测,警报保护和其他字段。提出了一种用于高分辨率连续CMOS比较器(CMP)的自动偏移校准方法。根据短输入格式CMP的第一个输出,校准逻辑将选择适当的例程来计算最佳的修复装饰位。添加了两个校准代码并取平均值以获取实际代码。这主要考虑到比较器翻转可能会延迟一定的事实,这会导致与最佳校准代码的偏差。可以通过平均搜索结果从低到高以及从高到低点来抵消搜索错误的这一部分。根据不同的设计需求,可以通过调整最小的N频道金属氧化金属 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物(NMOS)与主输入对的相对比。电路实现基于使用5 V IO设备的110 nm闪存过程。分析和仿真结果表明,很容易实现少于1 mV的偏移,这适用于商业用途。所提出的自动偏移校准方法不会增加当前的消耗,并且可以轻松地转移到其他先进的技术流程,这使其有望将来使用。
(1) 根据应用的特定设备隔离标准应用爬电距离和间隙要求。必须小心保持电路板设计的爬电距离和间隙距离,以确保印刷电路板 (PCB) 上隔离器的安装垫不会减小此距离。在某些情况下,PCB 上的爬电距离和间隙会相等。在 PCB 上插入凹槽、肋条或两者等技术可用于帮助提高这些规格。 (2) 此耦合器仅适用于安全等级内的安全电气绝缘。应通过适当的保护电路确保符合安全等级。 (3) 在空气中进行测试以确定封装的浪涌抗扰度。 (4) 在油中进行测试以确定隔离屏障的固有浪涌抗扰度。 (5) 视在电荷是由局部放电 (pd) 引起的放电。 (6) 屏障两侧的所有引脚都绑在一起,形成一个双引脚设备。 (7) 在生产中使用方法 b1 或 b2。
摘要 - 数字转换器(ADC)用于从工业仪器到现代通信系统的许多应用中。ADC中存在的基本构建块是CMOS比较器,该比较器负责比较两个或多个信号。动态CMOS比较器是低功率应用程序中首选的功能效率。文献中存在许多动态CMOS比较架构。这项工作介绍了动态偏置比较器的设计和仿真结果。此比较器在180 nm的CMOS过程中设计,并由1.8V电源提供动力。在100 MHz时钟时,该比较器的功耗为每次比较10 fj。另外,蒙特卡洛(MC)模拟结果表明,该比较器的输入偏移为1.93 mV。
摘要:节能功率放大器 (PA) 可以延长电池寿命,同时又不牺牲线性度,对移动设备来说越来越重要。包络跟踪 (ET) 设计中的电源调制器会影响射频 (RF) PA 的效率提升。本文介绍了一种基于比较器的电源调制器的设计,该调制器可动态控制驱动 PA 所需的电源电压。 前置放大器被设计用于放大 RF 输入信号,包络检测器在比较器的 0 - 3.3 V 摆幅范围内跟踪放大信号。 单位比较器被设计为工作在 2.1 GHz 频率下,最小上升时间延迟为 0.2 ns,并且它被级联以用作 8 位比较器。多级电源调制器接收来自 8 位比较器的输入。这通过限制流过由比较器关闭的晶体管的电流来确定流向 PA 的电流量。因此,基于比较器的包络跟踪系统旨在设计 ET 电路并将功率附加效率提高到大约 45%。此外,ET 电路不包含电感器等笨重元件,因此预计会占用较少的芯片面积。
Low Power High Speed CMOS current Comparator in 0.18 µ m and 0.13 µ m Technology Sunil N. Limbachiya 1 , Priyesh.Gandhi 2 1-PG_Student, s_nil14@yahoo.com,LCIT-Bhandu, Gujarat (INDIA) 2-Assistant Professor, priyesh.gandhi@lcit.org,LCIT- Bhandu,古吉拉特邦(印度)摘要 - 本文以低功率和高速性能显示了CMOS当前比较器设计。使用电流镜设计设计的CMOS电流比较器。该电路在180nm和130nm CMOS工艺技术中进行模拟。模拟结果显示,比较器电路在180nm技术中具有412PS延迟,而130nm技术的370PS延迟。还可以进行比较器设计的工作,而低功率耗散。关键字:当前比较器,当前镜像,功率耗散,延迟,导师图形,Eldo Spice I简介