海浪有多种类型。海啸波是由地震或山体滑坡引起的非常长、非常快的波,毛细波是水面上的小涟漪,由风产生,主要受表面张力效应的影响。在波浪能应用中,感兴趣的波浪是风生重力表面波,即由风吹向海面而产生的波浪,主要受重力和惯性力的影响。因此,风生海浪是一种可再生能源,它由照射到地球上的太阳能分两步提炼而成,首先产生风,然后产生波浪。因此,海浪每单位体积所含的能量比风能和太阳能都要多,波浪能资源与风能的特性大致相似,在高纬度地区最大,如图 1.24 所示。
X 射线反射率 (XRR) 被广泛用于研究硬质和软质凝聚态材料的表面和界面,包括二维材料、纳米材料和生物系统。它能够以亚埃的精度推导出材料表面区域沿法线的横向平均电子密度分布。[4–6] 这有助于确定各种参数,包括表面粗糙度、单层或多层材料的结构以及毛细波对液体表面的影响。高亮度同步加速器 X 射线束能够在环境条件下实时在分子水平上分辨材料结构,而其他表面敏感实验技术几乎无法做到这一点。[7] 此类实验的例子是使用专用设备和样品池研究液体表面和界面。[8–11] 然而,存在与液体 XRR 相关的特殊问题。液体和支撑物之间的润湿角会导致样品液体弯曲,这通常会使数据分析复杂化。 [12] 这个问题可以通过利用能够处理大面积样品的样品环境来解决,例如朗缪尔槽 [13] 应用特殊的数据处理方法 [12,14] 或使用 X 射线纳米束。 [15] 然而,在某些情况下,可以充分利用样品曲率,例如 Festersen 等人 [15] 使用宽平行同步加速器光束“一次性”记录 XRR 曲线,但散射矢量 q 的范围有限。 专用于原位和/或原位 XRR 研究的样品环境 [16] 的最新发展开辟了新的机遇,例如,通过化学气相沉积 (CVD) 研究在液态金属催化剂 (LMCats) 上生长 2D 材料的过程。 [17] 这些系统有望生长高质量的材料 [18] 但同时,对实验的要求很高。 [19] 它们必须适应高操作温度、高材料蒸发以及在大气压下暴露于反应气体混合物。此外,它们还局限于有限尺寸的样本