摘要:i-motif是一类非标准DNA结构,具有潜在的生物学意义。已经开发了一种具有紫外吸收分光光度检测(CE-UV)方法的新型毛细管电泳,用于快速分析I-MoTIF折叠平衡,这是pH和温度的函数。在使用适当的调理程序后,用32厘米长的熔融二氧化硅毛细管(HPC)永久涂有32厘米长的二氧化硅毛细管,以32厘米长的熔融二氧化硅毛细管(使用适当的调节程序)以实现良好的可重复性后,进行了电泳分析。然而,研究了富含胞质的I-motiF序列(即TT,PY39WT和NMY01)之间的折叠和展开构象体之间的电泳分离受到损害,尤其是对于PY39WT和NMY01而言,导致完全重叠的峰。因此,具有多元曲线分辨率最小二乘(MCR-ALS)的反向卷积,对于在pH 6.5和12和40°C之间的不同浓度水平上发现的折叠和展开的物种的有效分离,利用电动机动机和UV光谱级别的小差异。MCR-ALS还提供了用于估计温度(T M)的定量信息,这些信息与紫外线和圆形二科(CD)光谱镜相似。获得的结果表明,由MCR-ALS辅助的CE-UV可能成为一种非常有用的工具,可以使I-Motifs和其他复杂DNA结构的折叠进行新颖的见解。
摘要:使用新型 CRISPR/Cas12a 系统具有优势,因为它与常用的 CRISPR/Cas9 系统相比具有不同的特点,从而扩展了基因组编辑 (GE) 应用的可能性。在这项工作中,CRISPR/Cas12a 系统首次应用于苹果,以研究其在 GE 应用中的普遍可用性。通过体外切割试验预先筛选出针对内源报告基因 MdPDS 不同外显子的有效引导 RNA,该基因的破坏会导致白化表型。将一个构建体转移到苹果中,该构建体编码 CRISPR/Cas12a 系统,该系统同时靶向 MdPDS 中的两个基因座。使用荧光 PCR 毛细管电泳和扩增子深度测序,所有已鉴定的再生白化芽的 GE 事件都被描述为缺失。未观察到两个相邻靶位点之间的大量缺失。此外,还经常观察到表现出多个 GE 事件的再生体和芽的嵌合组成。通过比较两种分析方法,结果表明荧光 PCR 毛细管凝胶电泳是一种灵敏的高通量基因分型方法,可以同时准确预测多个位点的插入/缺失突变的大小和比例。特别是对于表现出高嵌合频率的物种,可以推荐将其作为有效选择同型组蛋白 GE 系的经济有效的方法。
摘要:我们认为是一种新型的双通道耳语画廊模式(WGM)传感器,用于同时测量双向磁场和温度。分别称为二甲基硅氧烷和聚二甲基硅氧烷(PDMS)涂层的微丝烷(PDMS)涂层的微腔,分别称为通道1(CH1)和通道2(CH2)],将其集成到硅胶毛细管中,以促进Dual-ofter-nater-dual-oftry。与CH1和CH2相对应的谐振波长主要取决于磁诱导的折射率的变化以及分别在热诱导的参数(体积和折射率)的变化。MF浸润的毛细管启用双向磁场感测,最大敏感性分别为46 pm/mt和-3 pm/mt。PDMS涂层结构可以以79.7 pm/°C的最大灵敏度实现温度测量。除了温度响应之外,当前的工作具有双向磁性可调性的优势,该温度响应可预期在诸如矢量磁场和温度双参数传感的场中使用。
♦ 毛细管电泳 (CE) 是一种分离技术,利用施加的电压根据离子的电泳迁移率来分离离子。♦ 在毛细管凝胶电泳中,分子通过电流通过聚合物凝胶基质分离♦ 通过凝胶的运动基于分子的大小、形状和电荷♦ 十二烷基硫酸钠 (SDS) 使大多数蛋白质变性,并根据蛋白质的大小以相等的比例结合蛋白质,从而产生均匀的电荷质量比。
结构和地层捕获:CO 2以类似于天然气的方式物理捕获在不可渗透的岩石层下。残留捕获:CO 2分子由于毛细管而被困在岩石的孔隙中。溶解度捕获:地下水中溶解的CO 2形成了一种略密度的溶液,该溶液向下移动,远离大气。
间质葡萄糖监测系统(也称为闪光葡萄糖监测系统和实时连续葡萄糖监测系统)现在可用于监测葡萄糖有时与驾驶1辆车(不是第2组)有关的葡萄糖。这些系统的用户还必须携带手指式毛细管葡萄糖测试设备,因为有时需要使用验证性手指刺葡萄糖水平。有关更多详细信息,请参见DVLA网站上的INF 294传单。
图 1 . 使用 SALSA MLPA Probemix P140 HBA (C1-0322) 分析 SALSA Binning DNA SD031-S01-0924 (约 50 ng) 的毛细管电泳图。图中标出了 136 nt 处的 Hb Contant Spring 突变 (HBA2:c.427T>C, p.*143Glnext*31) 特异性探针的位置。不同批次的 P140-C1 探针混合物的探针峰高可能有所不同。
C Reagents, Plate Layouts, and Methods................................................................................74 Reagent Set............................................................................................................................ 74 Plate Layouts.......................................................................................................................... 75方法................................................................................................................................................................................................................................................................................................................................................................................................. 77 30厘米毛细管的条件方法................................................................................................................................................................................... Capillaries.....................................................80 Shutdown Method for 30 cm Capillaries............................................................................ 81 Capillary Rinse Method for 30 cm Capillaries.................................................................... 82 Conditioning Method for 50 cm Capillaries........................................................................ 83 Linear dsDNA Separation Method for 50 cm Capillaries....................................................84 Shutdown Method for 50 cm Capillaries............................................................................ 86
开发具有大量集成功能的大规模电解式 - 电气(EWOD)平台需要大量电极。传统上通过针计算最小化策略和路线路线方案来解决这一挑战,但我们提出了心形电极,当液滴运动是单向运动时,允许使用更少的引脚。此电极几何形状可确保液滴与前电极的重叠相比,而不是后部电极,从而产生了净毛细管将液滴向前拉的净毛细管。底部直径在0.8到1倍的底部液滴可以在长距离内可靠地驱动电极宽度,仅使用两个交替应用的驱动信号。最大信号开关频率使液滴的可靠运动与施加电压的平方和间隙高度成正比,但与电极直径成反比。互连电路的每个段仅跨越两个电极长度,这简化了电路路由并避免了大规模电极阵列中可能的迹线重叠。通过最小化销钉数,这种不对称设计为多功能大规模的EWOD平台中的电极布置提供了有希望的策略。