(注意)相关属性分类以阴影形式显示。 ◇资产合并资产分配固定类型(其他资产(股票,房地产投资信托,其他资产,其他资产,股票价格指数指数期货交易,政府债券期货交易)))))该基金通过股票投资贸易股票或投资信托提供了固定的股票股票信托,对股票投资贸易库或固定股票的投资信托公司“固定股票交易”。投资并固定了固定的比率。 ETC。”。 ◇没有外汇套期保值是指招股说明书或投资信托协议,该协议指出外汇将不会受到套期保值,否则将对外汇进行对冲。 *属性类别中列出的“交换对冲”表明是否有对日元交换风险的风险。
tatau kahukura:毛利人健康图表2024介绍了2015年图表中的指标更新,其中有新数据可用。在此处也使用了上一本图表簿中使用的统计方法,在这里也使用了一致性。此更新中的指标涉及健康,风险和保护性因素,健康状况,健康服务使用和卫生系统的社会经济决定因素。本图表提供了有关关键毛利健康指标的可靠且易于访问的统计信息。对卫生部门的政策,研究和服务设计以及更广泛的社会部门都具有价值。此信息也将对学生和更广泛的社区有所帮助,使他们能够更好地了解毛利人的健康。我们将此图表设计为卫生部门所有部位的工具。这里提出的结果强调了我们需要集中精力来改善毛利人健康并减少毛利人健康不平等的领域。表明,对于许多健康状况和慢性疾病,包括癌症,糖尿病,心血管疾病和哮喘,毛利人的率高于非毛利人。我们相信此更新将是所有致力于提供Pae Ora的人的宝贵资源:毛利人的健康期货。此更新和支持图形和文本的数据表可在卫生部的网站(www.health.govt.nz/tatau-kahukura)上找到。
神经性听力损失通常是由于外界刺激或遗传因素导致耳蜗毛细胞受损,无法将声机械能转换成神经冲动所致。成年哺乳动物耳蜗毛细胞不能自行再生,因此这种类型的耳聋通常被认为是不可逆的。对毛细胞分化发育机制的研究表明,耳蜗内非感觉细胞通过特定基因(如Atoh1)的过表达获得分化为毛细胞的能力,使毛细胞再生成为可能。基因治疗是通过体外筛选和编辑靶基因,将外源基因片段导入靶细胞,改变基因的表达,启动靶细胞相应的分化发育程序。本文总结了近年来与耳蜗毛细胞生长发育相关的基因,并概述了基因治疗方法在毛细胞再生领域的应用。最后讨论了当前治疗方法的局限性,以促进该疗法在临床环境中的尽早实施。
随着新西兰Aotearoa中数据技术和算法的出现,用于决策和支持,需要框架来指导我们如何最大限度地提高这些技术创造的机会并最大程度地减少它们可能施加的风险。对于使用MāOri数据的算法,由于数据固有的系统偏见以及算法开发的过程中固有的系统偏见,因此需要额外的考虑。算法可以作为数据的特殊用途进行构架,因此可以扩展当前存在的数据框架以包括算法。māori数据主权原则是众所周知的,研究人员和政府机构使用了在文化上适当使用Māori数据。扩展这些原则以符合算法的背景,并重新研究基本子主题,以解决与负责任算法有关的问题,从Māori角度来看,导致了Māori算法的主权原则。我们定义了这一想法,介绍了最新的原则和子原则,并突出了算法开发过程中偏见检测和最小化的策略。
背景Ragwitek是一种简短的Ragweed花粉提取物,该提取物被配合在每日的舌下片剂中,用于治疗短毛weed花粉引起的花粉激发 /过敏,可引起打喷嚏,流鼻涕或鼻塞和湿眼(1)。调节状态FDA批准的指示:Ragwitek是一种过敏蛋白提取物,被视为治疗短毛weed花粉诱导的过敏性鼻炎的免疫疗法,或者没有结膜炎,通过阳性皮肤测试证实,或在短皮肤测试中证实了pollen pollen-nige-nige抗体的体外测试。ragwitek被批准用于5至65岁的人(1)。ragwitek对严重的过敏反应(包括过敏反应和喉咽肿胀)有盒装警告,这可能会危及生命。必须在医生的监督下在医疗保健环境中给予初始剂量,并且必须监测至少30分钟的时间,才能注意威胁生命的全身或局部过敏反应的迹象和症状。如果患者耐受性剂量,则可以在家中服用随后的剂量。应为患者开发自动注射肾上腺素,并指示其适当使用。使用自动注射肾上腺素并停止使用Ragwitek治疗后,应立即寻求医疗服务。Ragwitek治疗可能不适用于某些潜在的医疗状况的患者,或者可能对肾上腺素或吸入支气管扩张剂没有反应的患者,例如β受体阻滞剂的患者(1)。
Bernard-Soulier综合征(BSS)是一种罕见的先天性疾病,其特征是巨骨细胞减少症和频繁出血。它是由三个基因(GP1BA,GP1BB或GP9)中的致病变异引起的,该变异编码为GPIB A,GPIB B和GPIB-V-IX复合物的GPIB A,GPIB B和GPIX亚基,这是Von Willebrand因子的主要血小板表面受体,是Von Willbrand因子的主要血小板受体,对于血小板粘附和聚集而言是必不可少的。根据受影响的基因,我们区分BSS型A1(GP1BA),B型(GP1BB)或C型C(GP9)。这些基因中的致病变异会导致缺乏,不完整或功能障碍的GPIB-V-IX受体,从而导致出血表型。使用基因编辑工具,我们生成了敲除(KO)人类细胞模型,这些模型帮助我们更好地理解了GPIB-V-IX复合体组装。此外,我们开发了能够纠正人类GP9 -KO巨型巨细胞细胞系中GPIX表达,定位和功能的新型慢病毒载体。生成的GP9 -KO诱导的多能干细胞产生了血小板,该血小板概括了BSS表型:膜表面和大尺寸的GPIX不存在。重要的是,基因疗法工具恢复了这两个特征。最后,用基因治疗载体转移了来自两个无关BSS患者的造血干细胞,并分化为表达GPIX的巨核细胞和血小板,大小降低。这些结果证明了基于慢性的基因疗法挽救BSS的潜力。
在这项工作中,我们基于傅里叶分析开发了一种高效的函数和微分算子表示。利用这种表示,我们创建了一种变分混合量子算法,用于求解静态、薛定谔型、哈密顿偏微分方程 (PDE),使用空间高效的变分电路,包括问题的对称性以及全局和基于梯度的优化器。我们使用该算法通过计算三个 PDE(即一维量子谐振子和 transmon 和 flux 量子比特)中的基态来对表示技术的性能进行基准测试,研究它们在理想和近期量子计算机中的表现。利用这里开发的傅里叶方法,我们仅使用三到四个量子比特就获得了 10-4 –10-5 阶的低保真度,证明了量子计算机中信息的高度压缩。实际保真度受到实际计算机中成本函数评估的噪声和误差的限制,但也可以通过错误缓解技术来提高。
c) 对于按本规范 2.3.2 规定判断可以使用的部件,或按 2.3.3 中 a)、b) 规定修理好的部件,应进行组装、调整。