0 。。。。4 毫巴 50 毫巴................................................. . . 5 2 0 .。。。6 毫巴 50 毫巴................................................. . . 5 3 0 .。。10 MBAR 100 MBAR ...................................................................................................................................................................... . . 5 4 0 .。。16 MBAR 100 MBAR .......................................................................................................................................................................... . . 5 5 0 .。。25 毫巴 250 毫巴................................................. . . 5 6 0 .。。40 毫巴 250 毫巴................................................. . . 5 7 0 .。。60 毫巴 500 毫巴................................................. . . 5 8 0 .。100 毫巴 500 毫巴................................................. . 5 9 0 .。160 毫巴 1500 毫巴....................................... 6 0 0 。。250 毫巴 1500 毫巴................................................. . 8 2 - 2.5。。2.5 毫巴 50 毫巴....................................... …… 6 - 4 。。。。4 毫巴 50 毫巴................................................. …… 7-6。。。。6 毫巴 100 毫巴................................................. ..A 8 - 10 .。。10 毫巴 100 毫巴................................................. …… 9 - 16 。。。16 MBAR 250 MBAR .................................................................................................................................................... ……B 1-25。。。25 毫巴 250 毫巴................................................. ……B 2-40。。。40 毫巴 500 毫巴................................................. C 5-60。。。60 毫巴 500 毫巴................................................. . .B 3 压力连接 用于 6 / 4 mm 软管的螺纹软管夹接头 ................................. 4 0 用于 8 的螺纹软管夹接头/ 6 mm 软管 ................................................ 4 1 信号输出 无信号输出................................................................ ................................................................ ...... 0 电流输出:0 - 20 mA 线性,3 线...................................... ........................................................ A 电压输出:0 - 10 V直流线性, 3 线................................................... ........................ C 电流输出:4 - 20 mA 线性,3 线......................................... ................................................... P 电源电压 分区>
专为大批量应用而设计的数字差压传感器系列。传感器可测量空气和非腐蚀性气体的压力,精度极高,无偏移漂移。传感器的压力范围高达 ±500 Pa(±2 英寸 H 2 O / ±5 毫巴),即使在测量范围的底端也能提供出色的精度。2 C 接口,可轻松直接连接到微处理器。这些传感器的出色性能基于奥松的专利传感器技术。差压由采用流通技术的热传感器元件测量。久经考验的技术非常适合高质量的大规模生产,是要求严格且对成本敏感的 OEM 应用的理想选择。
尽管气象学家继续研究飓风运动和轨迹预测,这应该有助于改进未来的预报,但对于预测像 Hugo 这样的风暴强度变化,人们知之甚少。24 小时强度预报对应急准备官员尤其重要,因为更强烈的风暴可能导致更大面积的洪水,需要做好准备并疏散更多人口。本文讨论了影响飓风 Hugo 风暴轨迹的因素、登陆前的强度变化以及风暴减弱过程中各个阶段的地面风分布。结论是,飓风 Hugo 在登陆前六小时内的快速增强(1 毫巴/小时)与风暴外围的低空风切变以及 Hugo 穿过墨西哥湾流有关。登陆时地面风场的确定是
SAE5-35 是一种固态 -1000 至 35,000 英尺高度数据系统,可将压力高度转换为数字输出,如 SSR 压力高度传输国际标准中所述。SAE5-35 的数据输出以 29.92 英寸 HG(1013 毫巴)为基准。SAE5- 35 旨在为 GPS 和地形感知系统以及 C 模式转发器提供高度数据。SAE5-35 向转发器输出 Gillham Grey 码和两个独立的 RS232 数字输出,可供 GPS 或需要此格式的其他系统使用。此外,SAE5-35 还包括 SANDIA 航空航天独有的高度飞行监控 (AIM) 功能。通过添加可选的面板安装开关和信号器,AIM 模式将监控飞机是否偏离选定高度,并向飞行员发出通知。
运输应用需要在功率(和扭矩)密度方面提供高性能。同时,由于这些应用对安全至关重要,因此需要相当高的可靠性和/或容错能力。在所有可能影响电机可靠性的因素中,局部放电开始是最关键的因素之一,特别是对于低压、随机缠绕的机器。本文对航空航天应用的电机中的局部放电进行了广泛的实验研究。在代表性航空航天环境中使用正弦和快速上升脉冲进行测量,模拟整个商用飞机任务期间及之后遇到的典型环境条件(即低至 30 毫巴)。作为调查的主要结果,证明用于启动主飞行控制面的电机具有更高的局部放电开始风险。因此,它们的绝缘系统需要极其仔细的设计。
SDP800 传感器系列是 Sensirion 专为大批量应用而设计的数字差压传感器系列。这些传感器可以测量空气和非腐蚀性气体的压力,精度极高,无偏移漂移。这些传感器的压力范围高达 ±500 Pa(±2 英寸 H 2 O / ±5 毫巴),即使在测量范围的底端也能提供出色的精度。SDP800 具有数字 2 线接口,可轻松直接连接到微处理器。这些传感器的出色性能基于 Sensirion 的专利 CMOSens® 传感器技术,该技术将传感器元件、信号处理和数字校准结合在一块小型 CMOS 芯片上。差压由采用流通技术的热传感器元件测量。久经考验的 CMOS 技术非常适合高质量批量生产,是要求严格且成本敏感的 OEM 应用的理想选择。Sensirion CMOSens ® 技术的优势
SDP800 传感器系列是 Sensirion 专为大批量应用而设计的数字差压传感器系列。这些传感器可测量空气和非腐蚀性气体的压力,精度极高,无偏移漂移。这些传感器的压力范围高达 ±500 Pa(±2 英寸 H 2 O / ±5 毫巴),即使在测量范围的底端也能提供出色的精度。SDP800 系列具有数字 2 线 I 2 C 接口,可轻松直接连接到微处理器。这些传感器的出色性能基于 Sensirion 的专利 CMOSens® 传感器技术,该技术将传感器元件、信号处理和数字校准结合在一块小型 CMOS 芯片上。差压由热传感器元件使用流通技术测量。久经考验的 CMOS 技术非常适合高质量的大规模生产,是要求严格且成本敏感的 OEM 应用的理想选择。Sensirion CMOSens ® 技术的优势
提案人指南 1.0 NASA 行星风成实验室 (PAL) 1.1 什么是 PAL?行星风成实验室 (PAL) 是一种用于在不同行星大气环境下进行风成过程(风吹粒子)控制实验和模拟的设施,包括地球、火星和土星的卫星土卫六。PAL 目前由 NASA 的行星科学部门提供支持(2014 年之前,PAL 由 NASA 的行星地质和地球物理学 (PG&G) 计划提供支持)。PAL 包括位于加利福尼亚州莫菲特菲尔德的 NASA-Ames 研究中心 (ARC) 的设备和设施,亚利桑那州立大学 (ASU) 位于亚利桑那州坦佩,拥有单独的设备来支持 PAL 活动。PAL 包括美国最大的压力室之一,用于进行低压研究。PAL 可在受控实验室条件下对风成过程进行科学研究,并可对 NASA 太阳系任务的航天器仪器和组件进行测试和校准,包括需要大量低气压的任务。PAL 包括:(1) 火星表面风洞 (MARSWIT) 和 (2) 土卫六风洞 (TWT),位于加利福尼亚州山景城 NASA ARC 的结构动力学大楼 (N-242) 内,由亚利桑那州立大学管理。MARSWIT 和 TWT 由 NASA-Ames 的商店、仪器设施和成像服务提供支持。ARC 的 PAL 设施还配备了一名全职技术人员(在 ARC 工作的 ASU 员工),为行星用户提供服务。亚利桑那州立大学坦佩校区的配套设施包括环境压力/温度风洞 (ASUWIT)。ASU 还拥有涡流(尘卷风)发生器 (ASUVG),但目前归富尔顿工程学院所有(可协商用于行星研究)。ASUWIT 是 ASU 地球与空间探索学院 (SESE) 的一部分,由 SESE 教授 Ian Walker 负责运营。ASUWIT 由 ASU 的 Ronald Greeley 中心的工作人员提供支持。NASA-Ames 的火星表面风洞 (MARSWIT) 于 1976 年投入运行,用于研究陆地和火星条件下风夹带粒子的物理学,进行流场建模实验以评估从小岩石到地貌(缩放)如陨石坑等尺度上的风蚀和沉积,并在火星大气条件下测试航天器仪器和其他组件。MARSWIT 是一个 13 米长的开路边界层风洞,位于一个大型环境室内,在 1 巴至 5 毫巴的大气压下运行,在 1 巴时最大速度为 10.5 米/秒,在 5 毫巴时最大速度为 100 米/秒。该风洞采用开路设计,但位于一个大型压力室的地板上,内部高度为 30 米,内部容积为 13,000 立方米。对于低压风洞运行,将腔室密封并抽空,内部的开路风洞在低压环境中运行。抽空如此大腔室的内部压力需要大量电力,这通常非常昂贵。PAL 从热物理设施的蒸汽真空系统获取真空能量,大约 45 分钟内即可抽真空至火星模拟压力 (4 托)。由于真空系统运行成本高,双方达成协议,PAL 几乎只在与其他赞助 NASA-Ames 蒸汽工厂活动的 NASA-Ames 项目/设施合作时才抽真空。这种安排非常经济高效,但需要提前安排低压运行(需要抽空)。除了此协议外,还提供预留真空服务,前提是提供足够的资金并且没有时间安排冲突。
Barfield DPS350 大气数据测试仪是一款基于微处理器的设备,采用最新的传感器技术。DPS350 的操作方式与 Barfield 的 1811 系列测试仪类似,但所采用的传感器技术几乎无需进行昂贵的维修,而模拟仪器通常需要进行维修。DPS350 中集成了包含可编程保护限制功能的软件,可防止飞机仪器因负空速和过压条件而受损。计算机启动的电磁阀提供限制保护,可保护飞机高度、空速、爬升/下降率和马赫数仪器。传感器具有高精度和稳定性(详情请参阅大气数据规格),使 DPS350 可用于经过缩小垂直间隔最小值 (RVSM) 操作认证的飞机,并将校准间隔从 30 天增加到每年一次。简单的菜单驱动数字显示屏可计算并显示高度、垂直速度、空速、EPR 和其他各种测量单位的测量值,包括:英尺、米、节、公里/小时、马赫、英尺/分钟、米/分钟、EPR (Pt/Ps)、英寸汞柱、毫巴和磅/平方英寸。测试仪还包括内部泵,可产生适合模拟宽体飞机中 55K 英尺、650 节和 6000 英尺/分钟条件的压力和真空。
首字母缩略词 AADT 年平均日交通量 AERMET 美国气象学会/环境保护署监管气象学 AERMOD 美国气象学会/环境保护署监管模型 ANP 年度网络计划(本文件) AMoN 氨监测网络 APCD 路易斯维尔大都会空气污染控制区 AQI 空气质量指数 AQS 空气质量系统 ARM 批准的区域方法 BAM 贝塔衰减监测器 BOF 基础氧气炉 CAPS 腔体衰减相移 CASTNET 清洁空气状况和趋势网络 CBSA 核心统计区 CFR 联邦法规 CSA 组合统计区 CSN 化学形态网络 CO 一氧化碳 CO2 二氧化碳 DNPH 2,4-二硝基苯肼 DRR 数据要求规则 DV 设计值 EJ 环境正义 EMITS 排放清单跟踪系统 EMP 增强监测计划 ESAT 环境服务援助小组 FEM 联邦等效方法 FID 火焰电离检测器 FR 联邦法规 FRM 联邦参考方法 GC 气相色谱仪 GC/MS 气相色谱仪/质谱法 HPLC 高压液相色谱法 HVAC 采暖通风空调 ICP/MS 电感耦合等离子体/质谱法 IDEM 印第安纳州环境管理局 INDOT 印第安纳州交通部 KDEP 肯塔基州环境保护部 LADCO 密歇根湖空气主管联盟 mm 毫米 mmBTU 百万英热单位 LEADS 领先环境分析和显示系统 mb 毫巴 MOA 谅解备忘录 MSA 大都市统计区 NAAQS 国家环境空气质量标准 NADP 国家大气沉降计划 NATTS 国家空气毒物趋势站 NCore 国家核心多污染物监测站