毫米级、大面积均匀半导体器件分层用于物理故障分析和质量控制 Pawel Nowakowski*、Mary Ray、Paul Fischione EA Fischione Instruments,Export,宾夕法尼亚州,美国* 通讯作者:p_nowakowski@fischione.com 不断发展的微电子设备设计越来越复杂、越来越紧凑和越来越小。这些设计可能包括越来越多的层、三维 (3D) 垂直堆叠、气隙和不同的材料成分。大批量半导体器件制造需要强大的质量控制和故障分析过程。过去几十年来,已经开发出了许多故障分析技术,包括非破坏性和破坏性技术 [1-3]。一种非常流行的技术是器件分层,即从上到下控制地去除器件层。通过这种技术获得的信息可以支持质量控制、故障分析工作、成品和工艺改进数据以及逆向工程。
从多个图像中详细的人体表面捕获是许多3D生产,分析和传输任务的重要组成部分。但在实际时间内产生毫米的精度3D模型,并实际上在现实世界中捕获环境中验证其3D准确性,由于缺乏这些目标的特定方法和数据,因此仍然是主要的挑战。我们为此提出了两项互补贡献。第一个是一种高度可扩展的神经表面辐射场方法,能够通过构造实现毫米的精度,同时证明了高计算和记忆效率。第二个是一个新颖的数据集,MVMannequin,它是用高分辨率手持3D扫描仪捕获的衣服人体模型几何形状,并配对校准的多视图图像,可以验证毫米的准确性要求。尽管我们的方法可以产生如此高的密度和精确的几何形状,但我们显示了神经表面管道的侵略性稀疏和优化,只需使用几个GB的GPU存储器在计算时间内进行估算,同时允许实时毫秒的神经渲染。根据我们的框架和数据集,我们表明我们的方法在不到3分钟的训练时间内就可以达到77%的积分准确性和完整性,并具有68个观点。
所提出的 VCO 架构基于参考文献 [16-18] 中研究的 Colpitts 结构以及作者在 [12] 中提出的结构,如图 2 所示。该振荡器的有源部分由两个晶体管 pHEMT 1 和 pHEMT 2 组成:每个晶体管有 4 个指状物,栅极长度和宽度分别为 0.25 µm 和 20 µm。指状物数量越多,输出功率就越大 [19]。每个晶体管都偏置在工作点 (VDS=2.2 V, VGS -0.6 V),三个电感 Ld1、Ld2 和 Lg 分别等于 0.15 nH、0.15 nH 和 0.1 nH。电路的性能在很大程度上取决于偏置条件 [20],因此偏置电压和电感的值需要仔细选择。 VCO 的谐振电路基于两个源漏短路晶体管 pHEMT 3 和 pHEMT 4。因此,这两个晶体管充当变容二极管,其电容值由施加到其栅极的电压源 Vtune 调整。
摘要 - 如今,缩小 HEMT 器件的尺寸对于使其在毫米波频域中运行至关重要。在这项工作中,我们比较了三种具有不同 GaN 通道厚度的 AlN/GaN 结构的电参数。经过直流稳定程序后,96 个受测 HEMT 器件的 DIBL 和滞后率表现出较小的离散度,这反映了不可否认的技术掌握和成熟度。对不同几何形状的器件在高达 200°C 的温度下的灵敏度评估表明,栅极-漏极距离会影响 R 随温度的变化,而不是 I dss 随温度的变化。我们还表明,中等电场下的 DIBL 和漏极滞后表现出非热行为;与栅极滞后延迟不同,栅极滞后延迟可以被热激活,并且无论栅极长度的大小如何都表现出线性温度依赖性。
了解颗粒在空气界面上的运动可能会影响广泛的科学领域和应用。diamagnetic颗粒在空气 - 磁流体界面上流动,是磁体的排斥运动。在这里,我们显示了一种运动机制,其中吸引了空气 - 磁流体界面上的磁磁颗粒,并最终被困在距磁铁偏低的距离处。还已经研究了磁性颗粒的行为,并在一个统一的框架中对运动机制进行了理论,表明颗粒在空气 - 磁磁性 - 液体界面上的运动不仅受磁能的控制,而且是由液体磁性磁性远程绘制的磁性构成的曲率相互作用,并且是液体磁性磁性的磁性磁性磁性的磁性磁性,且磁性磁性的磁性。有吸引力的运动机制已应用于定向的自组装和机器人粒子引导中。
摘要:精确度量在电子设备中起着至关重要的作用,特别是在使用BICMOS技术的设备中嵌入THZ应用中的硅具有异质结(HBT)的表征。由于最近在纳米范围内制造技术的创新,能够在亚毫升波区域运行的设备成为现实,并且必须满足对高频电路和系统的需求。将精确的模型达到此类频率,不再有可能限制参数以下的提取低于110 GHz,并且必须研究允许获得被动和主动设备的可终止测量的新技术。在本论文中,我们将研究不同无源测试结构的硅(磁力)上S参数的特征,而B55技术中的HBT SIGE从Stmicroelectronics(最高500 GHz)进行了SIGE的表征。我们将首先引入通常用于此类分析的测量设备,然后我们将转到IMS实验室中采用的各种测量台,最后我们将重点介绍校准和剥离技术(DE-DEMEDDIQUS(DE-EXED),通过审查高频率特征和两种效率上的校准劳ith钙的主要批评,以进行校准和剥离技术。 TRL)到WR-2.2条。在完成时,我们将提出一些测试结构,以评估对Miller Wave测量和新输电线设计解决方案的不良影响。将提出两个为IMS的磁力表征的光质产生的循环:我们将介绍一个新设计的浮球层设计,并评估其限制寄生效应以及其环境效果(底物,邻近的结构和diaphony)的能力。为了进行分析,我们将依靠紧凑型模型 +探针的电磁模拟和混合EM模拟,包括用于评估测量结果的探针模型,更接近实际条件。将仔细研究两个有希望的设计:“布局M3”,旨在以单个级别的校准表征DUT,而“曲折线”,通过避免在硅的测量过程中避免任何运动,从而保持两个恒定探测器之间的距离。关键字:表征,传输线,Terahertz,毫米波,校准,silicuim,tbh坐着
如今,基于石英谐振器的参考振荡器的工作频率被限制在几百兆赫。从这样的参考振荡器中获取千兆赫范围的信号需要倍频或频率合成。然而,倍频过程会根据倍频系数的 20log 10 增加输出信号的相位噪声,同时也会增加电路的复杂性。从这个意义上讲,直接在毫米 (mm-) 波段的基频上产生 LO 信号是有利的。然而,这需要一个高质量 (Q-) 因子谐振器,最好在几千兆赫下工作。采用金属腔的传统无源谐振器的 Q 因子受到金属中的电阻损耗的限制。或者,基于陶瓷谐振器的直接在基频下工作的振荡器提供平均相位噪声,并且通常在 25 GHz 以上不可用。
由于其优异的介电性能,玻璃可以作为表面离子阱制造中石英或蓝宝石的低成本替代材料。与高电阻率(5000 Ω·cm)硅衬底(20 MHz 时的典型损耗角正切为 1.5)相比[24],本文采用的玻璃衬底(Corning SGW 8.5)在 5 GHz 时的损耗角正切为 0.025,体积电阻率为 10 10 Ω·cm(数据可从产品信息表获得)。这省去了硅阱所需的射频屏蔽层和绝缘层,并使制造程序变得更加简单。此外,透明玻璃(波长为 300 至 2400 nm 的透射率为 90%)可以使光的传输和收集更加灵活,例如,通过在下面放置光纤和/或光电探测器。 [25]与其他介电材料(如蓝宝石和石英)相比,玻璃不仅成本低,而且可制造性更先进,可以实现高可靠性的玻璃通孔、[26,27]阳极键合、[28]