在生长过程中,腔体压力和晶圆温度分别保持在 5.0 托和 800 o C。我们采用脉冲注入策略来调节二次成核并实现逐层生长模式。每个反应循环包括 2 分钟所有前体共注入,然后中断前体并清洗 1 分钟,循环时间为 3 分钟。通过五个生长循环获得了晶圆级多晶 MoS 2 薄膜;因此,总生长时间为 15 分钟。
摘要 - 我们报告了含镁镁(MGF 2)的微型谐振器中的Kerr频率梳子的产生。两个MGF 2微毫无疑问,其Q因子为10 8 andradiiof 180 µMAND 85 µMWEREFAREFRICATICAND和CHACHACTHACTARIDED。尽管处于1550 nm的波长处处于正常的色散状态,但微腔表现出了Kerr Freemencycombs的产生。可见,单一肺炎腔,当带有1550 nm激光器时,产生了一个梳子,具有光谱范围超过250 nm。这种出乎意料的现象强调了MGF 2微孔子的独特非线性特性,并基于超高Q晶体窃窃私语模式的谐振器,为紧凑型Kerr梳子发电机打开了新的视角。在方面上,紫外线(UV)波长范围内MGF 2的透明度表明,将KERR频率梳延伸到UV光谱中的潜力,进一步增强了非线性光子应用中MGF 2微腔的多功能性。
1。rd和al。呼吸剧加热。2021; 43(3):341-348。 doi:1016/j.htct.2020.06.006 2。他施舍。剧型。2020; 99:1505-1 doi:10.10.1007/s0027-020-0404052-Z 3。in:StatsearchPub-sement; 2023。2023年7月31日访问。m和al。J Manag Sec Pharm2020; 26(12)(柔软B):S8-S15。招募米切尔。SM Clin Med Oncol2017; 1(1):1001。 6。 in:Statsearch Pub-sement; 2023。 2023年7月17日访问。 JL Dotson,Lebowicz Y. in:Statsearch 出版; 2023。 2022年7月18日访问。 n等。 J Clin Med 2021; 10:1026。 doi:10.390/jcm10051026 9。 Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 14。2017; 1(1):1001。6。in:StatsearchPub-sement; 2023。2023年7月17日访问。JL Dotson,Lebowicz Y.in:Statsearch出版; 2023。2022年7月18日访问。n等。J Clin Med 2021; 10:1026。 doi:10.390/jcm10051026 9。 Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 14。J Clin Med2021; 10:1026。 doi:10.390/jcm10051026 9。Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 14。Brodsky RA。血液2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 14。2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。miyata t和al。n Engel J Med。1994; 330:249-211。Bessler M和Al。J.1994; 13(1):110-112。miyata t和al。科学。1993; 259:1318-113。JF和Al。血。14。1992; 79:1400-1403。 J和Al。 单元格。 1993; 73-711。 15。 Wilcox La和Al。 血液 1991; 78(3):820-8 16。 Medof Me,Al。 SCI USA Acad。 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 Dezern Ae,Brodsky RA。 临床北部呼吸剧。 2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。1992; 79:1400-1403。J和Al。单元格。1993; 73-711。 15。 Wilcox La和Al。 血液 1991; 78(3):820-8 16。 Medof Me,Al。 SCI USA Acad。 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 Dezern Ae,Brodsky RA。 临床北部呼吸剧。 2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。1993; 73-711。15。Wilcox La和Al。 血液 1991; 78(3):820-8 16。 Medof Me,Al。 SCI USA Acad。 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 Dezern Ae,Brodsky RA。 临床北部呼吸剧。 2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。Wilcox La和Al。血液1991; 78(3):820-816。Medof Me,Al。 SCI USA Acad。 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 Dezern Ae,Brodsky RA。 临床北部呼吸剧。 2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。Medof Me,Al。SCI USA Acad。 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 Dezern Ae,Brodsky RA。 临床北部呼吸剧。 2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。SCI USA Acad。1985; 82(9):2980-217。MH等人。J Clin Invest。1989; 84:1387-118。Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 Dezern Ae,Brodsky RA。 临床北部呼吸剧。 2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。Davies A和Al。J扩展。1989; 170:637-619。m和al。J Spec Pharm Manag。2020; 26(12)(补充B):S3-S820。Dezern Ae,Brodsky RA。临床北部呼吸剧。2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。Parker CJ。血液学和SOC雌醇教育2016; 208-216。22。illingworth a和al。细胞细胞t。2018; 94-66。 doi:10.1002/cycle.b.21609 23。Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。Southernland Dr and Al。细胞细胞t。2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。肥胖的B和Al。白血病。2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。dingli d和al。剧型。2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。maninal p al。印度J仅呼吸蛇出血。2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。Parker C和Al。血。2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。res螺栓。29。2015; 136(2):274-281。 Borowitz MJ等。 细胞仪B临床细胞症。 2010; 78(4):211-230。 doi:10.1002/cyto.b.20525 30。 labcorp。 2023年9月4日访问。https://www.labcorp.com/tests/502251/paroxysmal-nocturnal-hemoglobinuria-pnh 31。 生物。 2023年9月11日访问。https://www.bioreference.com/physicians/resources/test-directory/?type=by_test&test&test&test_id = 5380 32。 任务诊断。 2023年9月12日访问。https://testdirectory.questdiarostics.com/test/test/test-detail/94148/paroxysmal-nocturnal-nocturnal-hemoglobinuria-hemoglobinuria-pnh-pnh-pnh-with-flaer-flaer-flaer-high-high-high-high-high-high-semititive? 新基因学。 2023年9月11日访问。https://neogenomics.com/test-menu/high-sensitivity-pnh-evaluation 34。 CSI实验室。 2023年9月11日访问。https://www.csilaboratories.com/flow/pnh-high-sensitivity/ 35。 告知诊断。 2023年9月11日访问。https://www.informdx.com/our-services/hematopathology/hematology-oncology-oncology-testing/ 36。 Arup实验室。 2023年9月4日访问。https://ltd.aruplab.com/tests/pub/2005006 37。 Dahl-Chase诊断服务。 2023年9月11日访问。https://www.dahlchase.com/ services/pnh-testing.aspx 38。 Dahl-Chase诊断服务。 Accessed September 11, 2023. http://dahlchase.host4kb.com/article/AA-00231/15/ Dahl-Chase-Directory-of-Services/Flow-Cytometry-Testing/Paroxysmal-Nocturnal-Hemoglobinuria-Analysis.html 39. hemagogenix。 访问已访问的Sep-Tember 11,2023。https://hematogenix.com/technologies/flow-cytometry 40。 Mayo诊所实验室。2015; 136(2):274-281。Borowitz MJ等。细胞仪B临床细胞症。2010; 78(4):211-230。 doi:10.1002/cyto.b.20525 30。labcorp。2023年9月4日访问。https://www.labcorp.com/tests/502251/paroxysmal-nocturnal-hemoglobinuria-pnh 31。生物。2023年9月11日访问。https://www.bioreference.com/physicians/resources/test-directory/?type=by_test&test&test&test_id = 5380 32。任务诊断。2023年9月12日访问。https://testdirectory.questdiarostics.com/test/test/test-detail/94148/paroxysmal-nocturnal-nocturnal-hemoglobinuria-hemoglobinuria-pnh-pnh-pnh-with-flaer-flaer-flaer-high-high-high-high-high-high-semititive?新基因学。2023年9月11日访问。https://neogenomics.com/test-menu/high-sensitivity-pnh-evaluation 34。CSI实验室。2023年9月11日访问。https://www.csilaboratories.com/flow/pnh-high-sensitivity/ 35。告知诊断。2023年9月11日访问。https://www.informdx.com/our-services/hematopathology/hematology-oncology-oncology-testing/ 36。Arup实验室。2023年9月4日访问。https://ltd.aruplab.com/tests/pub/2005006 37。Dahl-Chase诊断服务。2023年9月11日访问。https://www.dahlchase.com/ services/pnh-testing.aspx 38。Dahl-Chase诊断服务。Accessed September 11, 2023. http://dahlchase.host4kb.com/article/AA-00231/15/ Dahl-Chase-Directory-of-Services/Flow-Cytometry-Testing/Paroxysmal-Nocturnal-Hemoglobinuria-Analysis.html 39.hemagogenix。访问已访问的Sep-Tember 11,2023。https://hematogenix.com/technologies/flow-cytometry 40。Mayo诊所实验室。Mayo诊所实验室。2023年9月11日访问。https:// www。mayocliniclabs.com/test-catalog/overview/62139#Performance 41。Mayo诊所实验室。 2023年9月11日访问。https://www.mayoclini- clabs。 com/test-catalog/概述/62139#费用和编码42。 分子病理实验室网络。 2023年9月11日访问。https:// www。 mplnet.com/images/uploads/pdfs/pnh_3.pdf 43。 分子病理实验室网络。 2023年9月11日访问。https://www.mplnet.com/ tests/paroxysmal-nocturnal-hemoglobinuria-1 44。 pathgroup。 2023年9月11日访问。https://pathconnect.pathgroup.com/testmenu/#/testin-fo/ue5irq%3D%3d 45。 克利夫兰诊所实验室。 2023年9月11日访问。https://clevelandcliniclabs.com/wp-content/uploads/2021/06/ High-sensitivity-flow-flow-cytometry-for-paroxystry-for-paroxymal-noctmal-nocturnal-nocturnal-nocturnal-hemoglobinuria.pdf 46.pdf 46.pdf 46 .pdf 46。 密歇根州医学实验室。 2023年10月10日访问。https://mlabs.umich.edu/tests/pnh-marker-panel47。 爱荷华大学诊断实验室。 2023年10月10日访问。https://www.healthcare。 uiowa.edu/path_handbook/rhandbook/test1123.html 48。 UF病理实验室。 2023年10月10日。 匹兹堡大学。 2023年10月10日访问。https://www.path.pitt.edu/divisions/section-laboratory-medicine/division-clinical-hematopathology/clinical-flow-cytometry-0。Mayo诊所实验室。2023年9月11日访问。https://www.mayoclini- clabs。com/test-catalog/概述/62139#费用和编码42。分子病理实验室网络。2023年9月11日访问。https:// www。mplnet.com/images/uploads/pdfs/pnh_3.pdf 43。分子病理实验室网络。2023年9月11日访问。https://www.mplnet.com/ tests/paroxysmal-nocturnal-hemoglobinuria-1 44。pathgroup。2023年9月11日访问。https://pathconnect.pathgroup.com/testmenu/#/testin-fo/ue5irq%3D%3d 45。克利夫兰诊所实验室。2023年9月11日访问。https://clevelandcliniclabs.com/wp-content/uploads/2021/06/ High-sensitivity-flow-flow-cytometry-for-paroxystry-for-paroxymal-noctmal-nocturnal-nocturnal-nocturnal-hemoglobinuria.pdf 46.pdf 46.pdf 46 .pdf 46。密歇根州医学实验室。2023年10月10日访问。https://mlabs.umich.edu/tests/pnh-marker-panel47。爱荷华大学诊断实验室。2023年10月10日访问。https://www.healthcare。uiowa.edu/path_handbook/rhandbook/test1123.html 48。UF病理实验室。2023年10月10日。匹兹堡大学。2023年10月10日访问。https://www.path.pitt.edu/divisions/section-laboratory-medicine/division-clinical-hematopathology/clinical-flow-cytometry-0。德克萨斯大学医学分公司。2023年10月10日访问。https://www.utmb.edu/lsg2/home/details?id=1366 51。俄勒冈州健康与科学大学实验室服务。2023年10月10日访问。https://www.ohsu.edu/lab-services/pnh-test-high-sensitivity 52。UW医学实验室医学和病理学。 2023年10月10日访问。https://dlmp.uw.edu/test-guide/view/pnhfloUW医学实验室医学和病理学。2023年10月10日访问。https://dlmp.uw.edu/test-guide/view/pnhflo
➢ 纳米级高垂直分辨率 ➢ 横向分辨率从几微米到 100 纳米 ➢ 高速 3D 表征 ➢ 无表面磨损或划痕损伤 ➢ 拼接能力可增加最大表征尺寸
创新、小巧、快速、精确。并且具有一定的节能效果。这些是许多先进技术和微型部件所需的要素。为了继续快速的技术进步,弗劳恩霍夫光机电系统研究所还向小型企业提供其研究组合、最先进的技术和设备以及 200 毫米和 300 毫米洁净室。 200 毫米晶圆上的 MEMS 技术和设备 在弗劳恩霍夫光机电系统研究所,MEMS 技术的技术开发和支持贯穿整个价值链:从单个工艺到技术模块再到完整技术,以及洁净室设备的工艺技术支持。i. 成功开发后,该研究所提供试生产或技术转让支持。弗劳恩霍夫光机电系统研究所涵盖的技术成熟度 (TRL) 为 3 至 8。因此,初创企业、中小型企业和没有自己工厂的公司尤其可以从低投资成本中受益。在传感器和执行器领域,弗劳恩霍夫光机电系统研究所开发了电容式超声波传感器等产品。这些是作为快速客户定制化调整的平台提供的。这为中小型公司提供了经济高效的高科技访问方式。对客户来说,另一个重要方面是:一种简单且经济高效的方法来测试其应用中的最新开发成果。为此,Fraunhofer IPMS 提供了评估套件。借助这些现成的设置,客户可以例如
用于 mmWave 封装测试的 xWave 平台 • 信号完整性 – 短阻抗控制共面波导 (CPW) – 测试仪和 DUT 之间的 1 个转换(连接器到引线框架) – DUT 球接触 CPW • 集成解决方案(PCB/接触器合一) – 包括从测试仪到 DUT 的完整 RF 路径 – 用于电源和控制信号的 Pogo 引脚 • 生产封装测试解决方案 – 坚固的引线框架可持续数百万次循环 – 机械组装完全可现场维护 – 包括校准套件(s 参数) – 用于三温测试(-55 至 155°C)的 CTE 匹配材料
该项目的目的是通过利用在要模拟的过程步骤中测量所涉及的材料的固有应力来获得变形晶片的图形表示。通过应力,可以通过对扁平晶片的一系列特征进行评估,可以直接获得变形,而无需考虑导致几何形状修饰的热预算或步骤。在一个阶段进行模拟整个晶圆仍然需要无法实现的计算能力,因此有必要将模拟分为3个主要步骤:
摘要:设计并制作了一种基于复合右手-左手 (CRLH) 原理的小型零阶谐振天线,在 30 GHz 下无需金属通孔即可实现贴片状辐射。将两个 CRLH 结构的镜像连接起来以设计无通孔天线。研究了等效电路、参数提取和色散图,以分析 CRLH 天线的特性。制作了天线并通过实验验证。测得的天线在 30 GHz 下的实际增益为 5.35 dBi。设计的天线在 10 GHz 带宽内没有杂散谐振。利用所提出的 CRLH 天线和 Butler 矩阵设计了一个无源波束形成阵列。采用基板集成波导来实现 Butler 矩阵。CRLH 天线连接到 4×4 Butler 矩阵的四个输出。对于馈送 CRLH 天线的 4×4 Butler 矩阵,从端口 1 到端口 4 的激励,扫描角度分别为 12 ◦、−68 ◦、64 ◦ 和 −11 ◦。
毫米级无电池硬膜外皮质刺激器 Joshua E. Woods 1,& , Amanda L. Singer 1,2,& , Fatima Alrashdan 1 , Wendy Tan 1 , Chunfeng Tan 3 , Sunil A. Sheth 3 , Sameer A. Sheth 4 , Jacob T. Robinson 1,2,5,6,7 * 1 莱斯大学电气与计算机工程系,6100 Main St, Houston, TX, 77005 2 Motif Neurotech,702 Marshall St, Houston, TX, 77006 3 UTHealth McGovern 医学院神经内科,6431 Fannin St, Houston, TX, 77030 4 贝勒医学院神经外科系,1 Baylor Plaza, Houston, TX, 77030 5 莱斯大学生物工程系, 6100 Main St,休斯顿,德克萨斯州,77005 6 莱斯大学应用物理学项目,6100 Main St,休斯顿,德克萨斯州,77005 7 贝勒医学院神经科学系,1 Baylor Plaza,休斯顿,德克萨斯州,77030 & 这些作者贡献相同 * 通讯作者,jtrobinson@rice.edu 摘要 难治性神经和精神疾病越来越多地使用植入式神经调节装置进行脑刺激疗法治疗。然而,目前市售的刺激系统受到对植入式脉冲发生器和有线电源的需求的限制;这种架构的复杂性会产生多个故障点,包括导线断裂、移位和感染。实现微创方法可以增加获得这些疗法的机会。在这里,我们展示了第一个毫米大小的无导线脑刺激器,用于大型动物和人类受试者。这种数字化可编程的超脑治疗装置 (DOT) 宽度约为 1 厘米,但可以通过硬脑膜产生足够的能量来按需刺激皮质活动。这种极端的小型化是使用最近开发的磁电无线电力传输实现的,它使我们能够达到刺激大脑表面所需的功率水平,而无需直接接触皮质表面。这种外部供电的皮质刺激 (XCS) 开启了简单的微创外科手术的可能性,可以通过永不接触大脑表面的微型植入物实现精确、持久和在家的神经调节。当药物无效、效果不佳或产生无法忍受的副作用时,患者和临床医生越来越多地转向神经调节来寻求有效的治疗方法。对于帕金森病 (PD) 和特发性震颤 (ET),深部脑刺激是治疗震颤 1 和其他症状 2 的标准治疗方法。对于重度抑郁症 (MDD) 和强迫症 (OCD) 等精神健康问题,越来越多的共识认为,当药物无法提供充分治疗时,通过神经生理学调节特定大脑区域的活动可以提供一种有效的治疗方法 3 。经颅磁刺激 (TMS) 就是应用这种刺激的一种方法。TMS 可以使用 1-2 特斯拉的外部磁场 4 ,非侵入性地激活大脑表面几毫米到几厘米大小的小区域,并且已经在大量临床研究中成功用于治疗神经精神疾病。自 1998 年以来,使用 TMS 治疗神经精神疾病的临床试验数量呈指数级增长,翻倍时间约为 2.5 年 5 。根据这些临床试验的数据,FDA 已批准使用 TMS 治疗难治性抑郁症,并且如果患者对传统抗抑郁疗法无效,大多数保险公司都会报销多次临床治疗的费用 6 。还有有希望的数据表明,TMS 可用于治疗强迫症 7 、创伤后应激障碍 8 和阿尔茨海默病 9 。虽然 TMS 是一种经过临床验证的疗法,但这种疗法有两个主要局限性。首先,TMS 系统目前需要大约 3 MW 10 的大峰值功率,这意味着它们目前仅获准在诊所使用。因此,对于住得离 TMS 设施较远或无法从工作或其他生活中抽出时间接受日常 TMS 治疗的患者,无法使用 TMS。其次,每次治疗定位可能不精确,因为每次患者在诊所时都必须对准刺激器。虽然还有其他非侵入性脑刺激形式,如经颅直流刺激 (tDCS) 和经颅交流刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,而头皮神经会产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性可能会限制患者的接受度。传统上,慢性刺激器的植入包括由电池供电的植入式脉冲发生器 (IPG),通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,据报道,4% 至 15% 的植入导线会因频繁移动而发生导线移位和断裂 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的设备已成功用于根据这些临床试验的数据,FDA 已批准使用 TMS 治疗难治性抑郁症,并且如果患者对传统抗抑郁疗法无效,大多数保险公司会报销多次诊所治疗的费用 6。还有有希望的数据表明,TMS 可用于治疗强迫症 7、PTSD 8 和阿尔茨海默病 9。虽然 TMS 是一种经过临床验证的疗法,但这种疗法有两个主要局限性。首先,TMS 系统目前需要大约 3 MW 10 的大峰值功率,这意味着它们目前仅被批准用于诊所。因此,对于那些住得离 TMS 设施很远或无法抽出时间离开工作或其他生活活动来参加日常 TMS 治疗的患者来说,TMS 是无法使用的。其次,由于患者每次在诊所时都必须对准刺激器,因此每次治疗的定位可能不精确。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,而头皮神经会产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性会限制患者的采用。传统上,慢性刺激器的植入包括由电池供电的植入式脉冲发生器 (IPG),通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,据报道,4% 至 15% 的植入导线因频繁移动而导致导线移位和断裂 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的装置已成功用于根据这些临床试验的数据,FDA 已批准使用 TMS 治疗难治性抑郁症,并且如果患者对传统抗抑郁疗法无效,大多数保险公司会报销多次诊所治疗的费用 6。还有有希望的数据表明,TMS 可用于治疗强迫症 7、PTSD 8 和阿尔茨海默病 9。虽然 TMS 是一种经过临床验证的疗法,但这种疗法有两个主要局限性。首先,TMS 系统目前需要大约 3 MW 10 的大峰值功率,这意味着它们目前仅被批准用于诊所。因此,对于那些住得离 TMS 设施很远或无法抽出时间离开工作或其他生活活动来参加日常 TMS 治疗的患者来说,TMS 是无法使用的。其次,由于患者每次在诊所时都必须对准刺激器,因此每次治疗的定位可能不精确。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,而头皮神经会产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性会限制患者的采用。传统上,慢性刺激器的植入包括由电池供电的植入式脉冲发生器 (IPG),通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,据报道,4% 至 15% 的植入导线因频繁移动而导致导线移位和断裂 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的装置已成功用于每次治疗定位可能不精确,因为患者每次去诊所时都必须对准刺激器。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,从而产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性可能会限制患者的采用。慢性刺激器的植入传统上包括由电池供电的植入式脉冲发生器 (IPG),并通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,频繁移动会导致导线移位和断裂,据报道,植入导线中有 4% 至 15% 会发生这种情况 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的设备已成功用于每次治疗定位可能不精确,因为患者每次去诊所时都必须对准刺激器。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,从而产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性可能会限制患者的采用。慢性刺激器的植入传统上包括由电池供电的植入式脉冲发生器 (IPG),并通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,频繁移动会导致导线移位和断裂,据报道,植入导线中有 4% 至 15% 会发生这种情况 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的设备已成功用于
60 GHz 毫米波 (mmWave) 雷达是一种用于检测和跟踪家庭健康状况和行为的替代传感技术。雷达有助于解决多种传感难题,包括确定房间是否有人(以及有多少人)、识别运动特征以识别跌倒事件,以及测量人的生命体征以评估睡眠质量等。毫米波雷达本质上是一种基于射频的传感器,无需接触身体即可感应,而且由于传感器不提供任何视觉可识别的信息,因此可以安装在卧室或浴室等敏感区域。在应用层面将这些功能结合在一起可以帮助家庭监控系统让亲人和护理人员确信人是安全和健康的。