人员认证航空工业协会于 1996 年批准 NAS 410(国家航空标准)作为行业标准。自 1997 年 12 月 31 日起,它取代了 MIL STD 410 E。NAS 410 级别 I、级别 II 和级别 III 培训和认证应由获得 NAS 410 级别 III 认证的人员在特定方法技术和产品上进行。 NAS 410 认证是向海外客户出口飞行硬件的强制性要求(例如:英国劳斯莱斯、法国空客、美国霍尼韦尔等),也是印度民航局 (DGCA) 对颁发无损检测方法能力证书 (COC) 的强制性要求,各政府监管机构的批准 DGCA 对无损检测的批准 在民用飞机上进行无损检测的人员,应从印度民航局 (DGCA) 获得颁发的能力证书 (COC)。民航要求 (CAR) 详细说明在第 2 节 - 适航系列“L”,第 xiv 部分,1992 年 1 月 20 日。修订版 2,2006 年 5 月 23 日。CAR 的本部分规定了颁发和更新能力证书的年龄、知识、资格、技能和医疗标准方面的要求。每六个月续期一次,费用为 2500 卢比。DGAQA 无损检测认证 对于军用飞机的无损检测,人员必须经过政府监管机构飞机质量保证局局长的批准。国际认证 NADCAP(国家航空
AC 咨询通函 AD 适航指令 ADIRU 空中数据惯性参考装置 AEH 机载电子硬件 AFHA 飞机功能危害评估 AIR 航空航天信息报告 AR 授权代表 ARP 航空航天建议做法 ATC 空中交通管制 AVSI 航空航天飞行器系统研究所 BCA 波音民用飞机 BITE 内置测试设备 BQN 波多黎各国际机场 CAS 警告咨询系统 CCA 常见原因分析 CIA 变更影响分析 CMA 共模分析 DA 开发保证 DAL 开发保证级别 ECL 电子检查表 EICAS 发动机仪表和机组警报系统 FHA 功能危害评估 FMEA 故障模式和影响分析 FTA 故障树分析 IMA 集成模块化航空电子设备 IP 问题文件 LRM 线路可更换模块 LRU 线路可更换单元 MBD 基于模型的设计 MBSE 基于模型的系统工程 MIA 修改影响分析 MIT 麻省理工学院 NTSB 国家运输安全委员会 NextGen 下一代航空运输系统 OEM 原始设备制造商 PA 过程保证 PR 问题报告 S&MF 单一和多重故障 SAVI 系统架构 虚拟集成SCD 规范控制图 SEE 单一事件效应 SFHA 系统功能危害评估 SME 主题专家 SOS 系统的系统 SSA 系统安全评估
9 月 12-15 日 AMS 金属集团委员会会议 加拿大不列颠哥伦比亚省温哥华 9 月 13-15 日 E-36 电子发动机控制委员会会议 美国加利福尼亚州西海岸 9 月 14-16 日 G-3、航空航天联轴器、接头、软管和管道组件 美国俄亥俄州辛辛那提 9 月 19-20 日 AE-4 民用飞机 EMC 工作组 加拿大魁北克省魁北克市 9 月 19-23 日 AMS CACRC 委员会会议 2016 年 9 月 德国科隆 9 月 19-22 日 SSTC 系统标准和技术委员会 美国佛罗里达州奥兰多 9 月 20-22 日 AGE-2C 秋季委员会会议 加拿大魁北克省蒙特利尔 9 月 20-22 日 S-9 客舱安全规定委员会 美国俄克拉荷马州俄克拉荷马城 9 月 20-22 日 飞机 SEAT 委员会会议 美国印第安纳州印第安纳波利斯 9 月 21-23 日 AE-2 雷电委员会 加拿大魁北克省魁北克市 9 月21 G-45 人体系统整合委员会会议与人为因素和人体工程学协会年会联合举行 美国华盛顿特区 9 月 26 日 AMS K 无损方法和工艺委员会 美国加利福尼亚州圣地亚哥贝赛德 9 月 26-28 日 E-34 推进润滑剂委员会 美国加利福尼亚州旧金山 9 月 27-29 日 A-5 航空起落架系统委员会 荷兰阿姆斯特丹
水蒸气是最重要的大气成分,对地球辐射收支有很大影响。除了水蒸气的直接辐射强迫外,其通过产生云滴的间接效应也在气候中起着至关重要的作用。因此,准确和定期地表征其在大气中的丰度至关重要,特别是在不断变化的气候系统中。在大气的上对流层/下平流层 (UTLS) 区域,水蒸气通过均质或非均质冻结过程驱动纯冰 (卷云) 云的生成,并通过沉积驱动云冰粒子的生长。卷云的辐射效应仍不为人所知;一些研究表明它们会冷却,而另一些研究表明它们会变暖,这取决于云光学厚度和冰粒大小和浓度的表现。在欧洲 CARIBIC 项目 [ 1 , 2 ](基于仪器容器的定期大气调查的民用飞机)的框架内,自 2005 年以来,我们利用实验室开发的基于光声 (PA) 方法的仪器,在 UTLS 区域(10 至 12 公里高度)的商用飞机上定期测量大气水蒸气和总水(即水蒸气和云水/冰的总和)浓度。机载 PA 水蒸气测量仪(称为 WaSul-Hygro)基于电信型近红外 (NIR) 二极管激光器。此外,为了确保同时测量总水量和水蒸气的要求,WaSul–Hygro 拥有针对低温低压条件优化的双室 PA 装置。这种操作由安装在飞机下方的特殊环境进气系统实现,该系统包含一个侧向进气口和一个前向进气口,用于对水蒸气进行采样
呼吁在ICCAS 2022取得巨大成功之后,我们很高兴组织ICCAS 2024会议。目的是促进有关下一代民用飞机和军用飞机的传播和交流科学信息。它提供了一个很好的论坛,可以将学术研究和工业工作结合起来,以研究我们如何开发智能飞机系统,拥有更多的选择自由,对环境,学习能力的敏感性,并能够与船员或操作员自然互动,同时保存他们的心理和身体资源。该领域的最新趋势涉及一些主要方面,例如基于行为,生理和神经系统测量的在线监视飞行表演,设计更生态的人类机器机器接口的设计,从而提供有关飞行或任务状态以支持决策过程的直觉信息,以及支持决策规则,以确保高级操作安全。该会议涉及与神经工程学和人为因素或人工智能有关的广泛理论和实践主题。它主要集中在航空上,但欢迎来自汽车,机器人,无人机或人造代理等广泛领域的贡献。邀请作者使用单词或乳胶会议模板提交最多300个单词的摘要。摘要将由计划委员会审查,可以接受口头或海报演示文稿的接受。如果接受了摘要,则参与者可以选择提交完整的论文(包括8页参考),也可以使用会议模板。全文也将由计划委员会审查。在线摘要汇编将作为开放访问发布。提交指南和信息可在https://events.isae-supaero.fr/event/32/page/145--贡献摘要提交是可选的:学术,工业和学生参与者可以通过简单的注册参加会议。
联合研究项目 HINVA 的目标是显著提高部署高升力装置的民用飞机气动性能预测和评估的准确性和可靠性。为了实现这一目标,目前工业上使用的最先进的数值和实验模拟方法将根据最大升力状态的飞行测试数据进行验证。该项目以相关欧洲项目(如 EUROLIFT)和 GARTEUR 研究中获得的经验和发现为基础。DLR 的飞行测试飞机空客 A320-200 ATRA 是三个方法领域飞行测试、欧洲跨音速风洞 ETW 中的高 Re-No 测试以及使用 DLR 的 TAU 代码进行数值模拟的共同配置基础。基线设备设置对应于着陆配置。还研究了巡航配置。该项目的核心要素是生成一个专用的、完全协调的验证数据库,该数据库由风洞和相应的飞行测试数据组成。以协同的方式利用所有三个方法领域的独特优势,可以定性和定量地确定此类飞机最大升力状态下的主要空气动力学现象。研究结果将为使用和应用数值工具以及低温测试提供新的模拟策略,以确定工业高升力设计过程精度范围内的升力系数和攻角方面的最大升力。该项目细分为三个主要工作包:ATRA 飞行测试、ETW 风洞测试和 CFD 模拟。基线几何和 CAD 模型的规范已基本完成。已经进行了全面的数值模拟以支持飞行测试仪器。空中客车公司和德国航天中心正密切合作,共同进行飞行测试规划和飞行测试仪器的开发,为首次飞行测试活动做准备。
无论是军用飞机还是民用飞机,提供足够的热管理都变得越来越具有挑战性。这是由于机载热负荷的量级显著增加,也是由于其性质的变化,例如存在更多低品位、高热通量热源,以及一些废热无法作为发动机废气的一部分排出。复合材料使用的增加提出了另一个需要解决的问题,因为这些材料在将废热从飞机转移到周围大气方面不如金属材料有效。这些热管理挑战非常严峻,以至于它们正在成为提高飞机性能和效率的主要障碍之一。在这篇评论中,我们将阐述这些挑战,以及文献中可能的解决方案和机会。在介绍来自周围环境的相关因素后,对挑战和机遇的讨论将通过对热管理系统中涉及的元素进行简单分类来指导。这些元素包括热源、热获取机制、热传输系统、向散热器的散热以及能量转换和存储。热源包括来自推进系统和机身系统的热源。热获取机制是从热源获取热能的手段。热传输系统包括冷却回路和热力学循环,以及相关组件和流体,它们将热量从热源移动到散热器,可能经过很长的距离。终端飞机散热器包括大气、燃料和飞机结构。除了讨论热管理系统的这些不同元素外,还详细讨论了飞机热管理研究中几个特别优先的主题。这些主题包括电力推进飞机、超高涵道比齿轮传动涡扇发动机和高功率机载军用系统的热管理;环境控制系统;动力和热管理系统;超音速运输机的热管理;以及热管理的新型建模和仿真过程和工具。
欧洲研发项目 INDeT(无损检测集成)框架内的多媒体无损检测程序和在线维护协助 Holger SPECKMANN,空中客车德国公司,德国不来梅 Martin LEY,奥迪股份公司,德国因戈尔施塔特 摘要 先进的信息技术正在发生巨大的变化。就在几年前,多媒体还处于起步阶段。一个由空中客车公司大量参与的欧洲研究小组研究了开发这些技术在役应用的可能性。数百页纸张,主要是文本,配以一些黑白图表,整齐地分类放入 DIN A4 文件夹中,总厚度为 12 厘米,重约 5 公斤 - 这就是文件(NTM - 无损检测手册),根据该手册,最先进的民用飞机会进行仔细可靠的损坏检测,如裂纹、腐蚀或变形。在“无损检测集成” (IN-DeT) 研究项目框架内,设计、开发了多媒体维护手册 (4M) 的电子演示器,并测试了其在日常工作中的适用性。它旨在通过使用多媒体和远程诊断系统大幅提高未来维护流程的效率。此外,如果在维护操作期间出现问题,维护工程师可以通过电话线登录飞机制造商专家的计算机。一台小型摄像机会传输飞机的实时图片——必要时还可以传输到世界各地。专家现在可以查看问题区域并迅速为工程师提供支持。通过电话进行复杂的描述和通过传真发送手写笔记已成为过去。这个过程称为在线维护援助 (OMA)。采用现代信息技术将节省大量时间,从而降低制造商(开发新程序/说明)和航空公司(应用这些程序/说明)的成本。创建并确保手册和程序中结构和工作流程的统一性还将大大减少“人为因素”对测量结果的潜在影响。通过使用基于多媒体的程序和手册,这些程序将“更少被误解”,因为文档中的动画和链接可以更有效地指出变化和新项目。
数百万飞行物的空中交通管理:一种替代方法 Dennis M. Bushnell 简介 20 世纪后期,民用航空运输包括商业定期航班和使用人类驾驶的小型飞机的通用航空。从那时起,各种技术革命及其对技术能力、小型化和成本降低的影响使民用航空的第三个组成部分成为可能:无人机。无人机或无人驾驶飞机系统 (UAS) 的潜在市场价值每年超过 1 万亿美元,是民用航空市场的两倍(参考1)。这个 UAS/无人机组件正处于非常快速的增长轨道上,在服务、政府、科学、商业任务(包括配送、检查、农业、测绘、搜索和救援、消防、边境巡逻、执法、保护、房地产等)中的应用蓬勃发展。它还使百年航空梦想得以实现:用经济实惠、安全的个人飞行器来运送人类。在无人机出现之前,民用飞机是由人类驾驶的,数量达数千架。即便现在,UAS 飞行器的数量也达数百万,而随着它们取代汽车,其数量实际上正在达到数千万架。支持技术将提高 UAS 能力并进一步降低成本。这些技术包括大大提高耐用性的具有卓越微观结构的纳米印刷材料、印刷制造、自主性、电力推进和先进的电池/燃料电池,以及规模经济。目前正在开发大量 UAS 飞行器设计,旨在实现城市空中交通、按需交通和个人飞行器 (PAV) 的载人运输(参考2)。展望未来,这些技术将为不断增加的飞行器尺寸和速度提供自主性和电气化,甚至达到超音速(参考文献1)。这些新型航空机器的低成本将导致数千万架此类飞机飞上天空。其中大多数将在发达和人口稠密的地区运行,可能带来安全隐患(参考文献3)。目前,这些新航空市场快速发展的主要问题是非飞行器专用的基础设施,包括着陆/起飞区域,尤其是在城市地区,最重要的是安全和进入空域(参考文献 4)。目前的共识似乎是,虽然近期的修改和增加将有助于 UAS 引入初期的空中交通管理,但城市空中交通
萨博 37 Viggen 飞机的中央计算机 Bengt Jiewertz 前身为 Datasaab 和爱立信 AB 摘要:20 世纪 60 年代初,决定将多用途攻击/战斗机萨博 37 Viggen 设计为单座飞机。中央计算机和平视显示器使得不再需要人类领航员。计算机是所有电子设备的中央计算和集成单元,为飞行员提供支持。这台计算机 CK37 用于萨博 AJ37,是世界上第一台使用集成电路(第一代 IC)的机载计算机。1970 年至 1978 年间交付了近 200 台计算机。功能可靠,到 21 世纪初,计算机仍在运行,并进行了升级。 关键词:飞机计算机,CK37 1. 背景 20 世纪初,有 12 家瑞典公司参与飞机制造。但他们没有得到瑞典国防部的支持。后来,在 1932 年,议会决定瑞典应该在军用飞机供应方面自给自足。萨博 (Svenska Aeroplan AktieBolaget) 公司成立于 1937 年,并受瑞典空军委托提供军用飞机。三种类型的螺旋桨飞机相继交付。第二次世界大战后,国际紧张局势加剧,萨博的技术能力和产能被用于新的先进发展。从 1950 年起,四架新型亚音速喷气式飞机交付。最著名的是战斗机萨博 29“Tunnan”。1950-1956 年间共交付了 661 架萨博 29,使瑞典空军成为世界第四大空军。从 1960 年起,三架军用超音速飞机交付。它们是萨博 35 Draken、多用途萨博 37 Viggen 和萨博 39 Gripen。萨博公司生产了 14 种不同类型的军用飞机和 4 种民用飞机。在开发先进飞机时,需要对空气动力学和材料强度问题进行大量计算。萨博公司很早就开始使用模拟器和计算机。从 1956 年开始,模拟电子模拟器 SEDA(萨博电子微分分析仪)被用于解决导弹和飞机设计中的问题。瑞典第一台电子管计算机是 BESK(Binär Elektronisk Sekvens Kalkator)。这台计算机推出后不久,萨博就成为其最大的用户之一。然而,这种计算能力还不够,萨博公司制造了自己的先进副本。这台计算机从 1957 年开始使用,是瑞典第二台功能强大的电子计算机。