1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
首次出版日期 1990 年 7 月 第 2 期,2004 年 3 月 26 日 第 2 期,修订 1,2005 年 9 月 16 日 第 2 期,修订 2,2006 年 8 月 31 日 第 2 期,修订 3,2007 年 3 月 21 日 第 2 期,修订 4,2007 年 9 月 28 日 第 2 期,修订 5,2008 年 3 月 27 日 第 2 期,修订 6,2008 年 9 月 30 日 第 2 期,修订 7,2009 年 3 月 31 日 第 2 期,修订 8,2009 年 9 月 11 日 第 3 期,2011 年 4 月 15 日
摘要—民用飞机的电子飞行控制系统已经进行了改进,以利用技术改进。新技术成熟后可以融入飞机。人们考虑向计算机和执行器/传感器之间的数字网络以及执行器和传感器的更多分布式处理方向发展。因此,未来的飞机系统可能采用新的架构。困难在于实现相同的安全性和可用性要求以及额外的运行可靠性(航空公司要求)。工程师面临的挑战是以合理的成本设计批量生产的容错系统。对空客和波音飞机现有电子飞行控制系统架构以及未来需求的分析促使我们简要概述了基于渐进式需求注入的架构设计过程的增量方法。索引术语—可靠性、容错、安全分析、关键航空电子系统、数字电子飞行控制系统
ananda_cm@css.nal.res.in 关键词:ARINC 429、综合模块化航空电子设备 (IMA)、发动机指示机组警报系统 (EICAS)、自动飞行控制系统 (AFCS)、实时仿真、FAR 25、FAA、DGCA、故障模式影响分析 (FMEA) 摘要:传统上,正在实施的航空电子架构具有联合性质,这意味着每个航空电子功能都有自己独立的、专用的容错计算资源。联合架构具有固有故障控制的巨大优势,同时也带来了大量使用资源的潜在风险,从而导致重量、隐患、成本和维护增加。随着计算机和软件技术的飞速发展,航空业正逐渐转向在民用运输机上使用综合模块化航空电子设备 (IMA),这可能导致每个硬件平台都包含多种航空电子功能。集成模块化航空电子设备是下一代飞机航空电子设备架构中最重要的概念。SARAS 航空电子设备套件完全与符合 FAR25 的几乎玻璃驾驶舱架构相结合。航空电子设备活动从开始到执行均受民航总局 (DGCA) 审查的法规和程序的约束。航空电子设备活动的每个阶段都有自己的技术参与,以使系统完美。此外,飞行数据处理、监控和分析也是民航业的重点领域,可确保安全性和