生物学 生物世界的多样性:生物世界:生物世界的多样性,分类类别,生物学分类:界(原核生物界、原生生物界、真菌界、植物界和动物界),病毒、类病毒和地衣,植物界:藻类、苔藓植物、蕨类植物、裸子植物、被子植物,动物界:动物分类的基础和动物分类植物和动物的结构组织:开花植物的形态:根、茎、叶、花序、花、果实、种子,典型的开花植物的半技术描述,一些重要科的描述,开花植物的解剖学:组织系统,双子叶植物和单子叶植物的解剖学动物的结构组织:器官和器官系统,两栖动物 - 青蛙细胞:结构和功能:细胞:生命:细胞、细胞理论、细胞概述、原核细胞、真核细胞 生物分子:生物体化学成分分析、初级和次级代谢物、生物大分子、蛋白质、多糖、核酸、蛋白质结构、酶 细胞周期和细胞分裂:细胞周期、有丝分裂和减数分裂及其意义 植物生理学:高等植物的光合作用:光合作用、早期实验、光合作用的位置、参与光合作用的色素、光反应、电子传递、ATP 和 NADPH 的合成和利用、C4 途径、光呼吸、影响光合作用的因素 植物的呼吸作用:植物呼吸吗?糖酵解、发酵、有氧呼吸、呼吸平衡表、克雷布斯/柠檬酸循环、呼吸商植物生长和发育:生长、分化、去分化和再分化、发育、植物生长调节剂人体生理学:呼吸和气体交换:呼吸器官、呼吸机制、气体交换、气体运输、呼吸调节、呼吸系统疾病体液和循环:组织液-血液、淋巴、循环途径、双循环、心脏活动调节、循环系统疾病排泄产物及其消除:人体排泄系统、尿液形成、小管功能、滤液浓缩机制、肾功能调节、排尿、其他器官在排泄中的作用、排泄系统疾病
日,月,年,时间,扬声器,位置08.00-08.30小时培训中心主席会议室纪念08.30-09.00小时培训中心 div>Sirin School 09.00-12.00小时神经系统。Thanakul Wanprasert,Thep Sirin School 13.00-16.00小时神经操作A.博士 div>博士 div>Phawiya Phu Pha,A。 div>nesdb div>博士 div>Anukul Thaweechai Phaisanakul和教职员工09.00-12.00小时描述了同事的荷尔蒙 div>博士 div>Thanakul Wanprasert 13.00-16.00小时进化助理关于植物的气体交换,运输和响应的讲座助理与光合成的讲座协会描述植物的结构和功能。助理描述植物的繁殖助理气体交换,植物和响应的操作助理自由与教师植物部13.00-16.00小时光合成协会Chaiwonon和115、116、118 09.00-12.00小时的教职员工植物的结构操作和职责助理花植物的操作助理生殖系统的描述 div>博士 div>Wuttipong Thongbai 13.00-16.00小时动物发展的讲座A. div>博士 div>Wuttipong Thongbai和教职员工09.00-12.00小时博士 div>DNA讲座,Rakchanok Koto博士DNA描述,助理遗传学讲座1协会遗传学2助理 DNA操作1助理 DNA操作2助理 生殖系统的操作和动物的发展 wuttipong thongbai和建筑物教师19号房间713,714,715 div div div div div div div div遗传学2助理DNA操作1助理DNA操作2助理生殖系统的操作和动物的发展wuttipong thongbai和建筑物教师19号房间713,714,715 div div div div div div div div
过去,使用了各种方法来治愈皮肤伤口,其中许多方法没有有利的结果。用基于水凝胶化合物的敷料代替旧方法已导致伤口愈合的质量和速度提高。已知水凝胶在改善气体交换和氧气供应中的作用以及伤口分泌物的吸收和温度调节以及伤口上传染剂的降低。在这项研究中,我们试图引入有效治愈皮肤伤口的最重要的水凝胶基团。调查结果表明,这些化合物包括具有天然碱(纤维素,淀粉,几丁质,壳聚糖,角叉菜胶,藻酸盐,葡萄糖,葡萄糖,葡萄糖,pullulan等)的聚合物水凝胶。),用物理碱产生的水凝胶。和化学(共聚物,均聚物等)),与自然和合成碱(与壳聚糖,胶原蛋白和葡萄糖起源的复合物相结合),具有聚乙烯醇等化合物等)和高级水凝胶(自愈合,喷涂,智能等)
土壤呼吸是用于量化土壤中微生物活性的最长且最常用的参数之一(Kieft和Rosacker,1991)。它被定义为氧(O 2)摄取或二氧化碳(CO 2)通过土壤微生物进化,包括有氧和厌氧代谢的气体交换(Anderson,1982)。土壤呼吸是由土壤微生物和中莫索纳对有机物矿化产生的,其中有机化合物被氧化为二氧化碳和水,同时吸收了有氧微生物的氧气。在自然的,不受干扰的土壤中(没有养分或有机材料),土壤微观和中间体之间存在生态平衡及其活动。然后,呼吸称为“基础呼吸”,该呼吸被定义为呼吸,而无需添加含碳(C)的底物。另一方面,在添加含糖,有机酸或氨基酸等含C的底物后测量的底物诱导的呼吸(SIR)是土壤呼吸,并用作土壤微生物生物量的量度。
摘要泥炭地在全球碳(C)周期中起着至关重要的作用,使其修复成为减轻温室气体(GHG)排放并保留的关键阶层。这项研究分析了在毛线和温带泥炭地中使用的最合并的恢复途径,潜在地适用于热带泥炭园区。我们的分析侧重于修复措施的温室气体排放和C保留潜力。评估C股票变化的泥炭地(重新开采)泥炭地和泥炭地与持续排水相关,我们采用了一种概念上的方法,该方法考虑了短期C捕获(大气与泥炭地生态系统之间的温室气体交换)和泥炭中的长期C序列。我们概念模型的主要标准是捕获C和减少温室气体排放的恢复措施的能力。我们的发现表明碳二氧化碳(CO 2)是长期
特发性肺纤维化(IPF)是一种原因不明的慢性、进行性、纤维化间质性肺疾病(ILD)(1)。IPF患者确诊后的中位生存期为3-5年(2)。IPF的主要特征之一是激活的肺成纤维细胞和肌成纤维细胞过度沉积细胞外基质(ECM)蛋白,导致气体交换减少,最终导致呼吸衰竭(3-5)。一项流行病学研究报告显示,IPF的发病率为每10,000人0.09人,患病率为1.30人(6)。IPF患者除了病情进一步进展导致的急性加重(AE)和慢性呼吸衰竭外,肺癌(LC)的发生也是该类患者死亡的主要原因之一(7)。研究报告称,大多数肿瘤通常位于下叶和肺周围,70% 的癌症出现在胸部纤维化区域 (8)。此外,研究表明,活化的间充质细胞在癌症和纤维化中起着至关重要的作用 (9)。其他研究也表明,IPF 的病理生理学与 IPF 患者腺癌恶性程度增加有关。然而,关于潜在过程的许多信息仍然未知。
次生组织要么简单(由相似的细胞类型组成),要么复杂(由不同类型的细胞组成)。例如,真皮组织是一种简单组织,覆盖植物的外表面并控制气体交换。维管组织是一种复杂组织,由两种专门的传导组织组成:木质部和韧皮部。木质部组织将水和养分从根部运输到植物的不同部位,包括三种不同的细胞类型:导管分子和管胞(均传导水)以及木质部薄壁组织。韧皮部组织将有机化合物从光合作用部位运输到植物的其他部位,由四种不同的细胞类型组成:筛细胞(传导光合产物)、伴细胞、韧皮部薄壁组织和韧皮部纤维。与木质部传导细胞不同,韧皮部传导细胞在成熟时是活的。木质部和韧皮部总是彼此相邻(图 30.3)。在茎中,木质部和韧皮部形成一种称为维管束的结构;在根中,这被称为维管柱或维管柱。
最近的许多研究强调了植物生长促进(Rhizo)细菌(PGPR)在支持植物发育中的重要性,尤其是在生物和非生物胁迫下。最关注植物生长 - 促进所选菌株的性状以及后者对植物生物量,根建筑,叶片区域和特定代谢物积累的影响。关于能量平衡,植物的生长是投入(光合作用)和几个输出(即呼吸,渗出,脱落和草食)的结果,在PGPR植入植物相互作用的古典研究中经常被忽略。在这里,我们讨论了PGPR及其代谢物在植物生态生理学上触发的修饰的主要证据。我们建议使用叶子气体交换检测PGPR诱导的光合作用活动的变化,并建议根据实验的特定目标设置正确的时间来监视植物响应。这项研究确定了挑战,并试图向从事PGPR植物相互作用的科学家提供未来的方向,以利用微生物在改善植物价值方面的应用。
如果不了解氧合器的产生和发展的历史,可以说现代市场提供的是一次性的气泡和膜氧合器。前者和后者的根本区别在于,气泡氧合器中的气体交换是通过血液与气体的直接接触进行的,即所谓的“血气界面”,这会损伤血细胞和蛋白质。气泡氧合器不适合长期使用。我们认为,它们不应该用于计划进行人工循环超过 1.5 - 2.0 小时的手术中。在膜式氧合器中,血液与气体通过膜分离,从而消除了血气中间相的形成,从而避免了对血液成分(血小板、红细胞等)及其蛋白质(纤维蛋白原、酶)的损害。值得注意的是,有真正的膜式氧合器设计用于长期支持失去肺功能数天甚至数周(复苏方面)。这是线圈螺旋硅胶氧合器 Avecor - Ultrox I(以前称为 Sci-Med Kolobow)。