对具有可自定义性能的高级材料的需求不断增长,已将广泛的研究促进了有机和无机材料的整合,以实现靶向功能。本文的重点是基于两维(2D)材料膜的智能设备的开发,特别是氧化石墨烯(GO)和Ti 3 C 2 t x Mxene,由于其出色的可调性。膜制造过程中的修改,从纳米结构调整到三维形态学工程,可显着提高膜性能并扩大其潜在应用。这些基于2D材料膜的智能设备具有广泛的应用,包括智能体系结构,软电子设备和医疗设备。具体来说,具有致动功能的纳米结构修饰的平面膜为智能体系结构和软机器人技术提供了可编程响应。创新的弯曲膜增强了声学隔膜的结构适应性。具有独特的纳米结构和表面形态的皱纹膜可实现人体运动监测的高敏性压力感应,作为可伸缩的无线通信的可伸缩天线,并提高气体分离效率。这些进步强调了结构设计在充分利用2D材料膜的潜力方面的重要性,为开发下一代多功能智能设备开发了新的可能性。
• 聚合物:包括气体分离、反渗透、纳滤、超滤、微滤、渗透汽化等具有特定功能的聚合物膜。 • 先进纳米结构材料:包括碳及其他复合材料、碳管等。 • 合成纤维面料和可穿戴技术:设计和制造具有技术功能、保暖或防水性能以及其他功能的智能面料。 • 高附加值金属和材料:具有特定性能的金属和其他物质,包括高电阻、高导电性等,常用于太空、地下勘探等极端环境。例如,其中包括:陶瓷、金属陶瓷、立方氮化硼、金刚石等刀具材料。 • 生物材料:为用于医学或生物功能而创造的生物或合成物质。 • 可持续技术的量子材料:具有非平凡拓扑电子态及其磁相的二维 (2D) 材料、拓扑绝缘体和半金属、超导体。探索复杂的相互作用、电子相关性以及量子自旋在可持续技术中的应用,例如低功耗电子学、自旋电子学、高效照明、太阳能利用和先进的传感器设备。 • 其他创新材料:包括用于储能复合材料、聚合物等的先进材料。航空航天、智能移动和无人系统该技术领域专注于新型交通方式、移动性和空间技术,包括自动驾驶、无人机和无人系统方面的创新,以及传感器、传感、数据处理和电信领域的系统:
摘要:混合基质膜(MMM)是通过使用七个具有广泛渗透率的聚合物矩阵形成的。所有聚合物矩阵都是聚酰亚胺,即:p84,pi-dapoh,pi-daroh,matrimid,pi-habac,pi-dam和pim-1,以增加O 2的渗透性顺序。由三氟乙烯酮和三倍苯烯的组合形成的微孔有机聚合物(TFAP-TRP)的固定(10%)浓度被作为多孔填充剂添加。测量了多种纯气体的材料特性及其分离性能,特别是HE,N 2,O 2,CH 4和CO 2的渗透率。已定量分析了MMM中渗透率的相对增加与基质聚合物膜的相关性之间的相关性。这项研究证明,MMM的渗透性增加与填充物高渗透率的贡献很大程度上联系在一起。添加TFAP-TRP多孔填充剂被证明对低至中等通透性的矩阵特别有益,从而显着增强了矩阵渗透率总体上。根据现有模型,拟合的关系大约是线性的,以预测分散阶段低比例的双相系统中的渗透性。推断允许评估纯微孔有机聚合物的渗透性,该聚合物与该组对不同填充物含量和其他聚合物矩阵所描述的先前值一致。在所有情况下,选择性在渗透率增加的同时保持差异均匀。在所有聚合物矩阵中添加TFAP-TRP导致MMM分离性能的适度改善,主要集中于其渗透率。关键字:气体分离,混合基质膜,渗透率,选择性,双相渗透性的建模,F-FACTOR
电子邮件:szaidi@qu.edu.qa smjavaidi@gmail.com研究兴趣:高级材料和清洁水以及清洁能源和清洁能量和环境,脱盐和水处理,脱水和水处理,逆渗透和转发的Osmosi进程以及薄膜的薄膜复合材料,用于RO和FO Appliation for Materiation for Natural coperation for Natoriation,Co 2 Ulifation co 2 Ulifation co 2 Ulifation co 2 Ulifation co 2 Ulifation 2 Ulifation 2 Ulifation 2 Ulifation 2 Ulistiation 2 Ulistiation 2 U LISTIAS,CO 2 U)以及转换和RO/NF海水淡化,用于燃料电池和碳捕获的电催化剂,CO 2利用和转化,燃料电池的复合聚合物膜和气体分离,防涂层涂层和腐蚀抑制剂,新型储能设备的设计。资格博士学位。化学工程,加拿大拉瓦尔大学,2000年论文标题:用于燃料电池硕士应用的复合膜的开发。化学工程,国王法赫德石油和矿物大学(KFUPM),沙特阿拉伯,一流的荣誉,1991年。论文标题:二硫代钠溶液中的氧化动力学B.Sc。化学工程(一流的荣誉),印度阿里加尔大学,1986年。专业经验07/2015年至2015年至今的化学工程主席和QAFAC高级材料中心卡塔尔大学,卡塔尔大学02/2013 –05/2015澳大利亚昆士兰大学澳大利亚大学昆士兰大学05/2007 - 01/2013化学工程系教授,Fahd fahd University,Fahd Universition of Petroleum&Minerals&Minerals&Minerals&Minerals&Minerals&Minerers(Kiy)(KIAR)(KIAUD)。 11/2005 - 2007年5月2007年,国王法赫德石油与矿物大学(KFUPM)副教授化学工程系(KFUPM)Dhahran 31261,沙特阿拉伯08/2000 - 11/2005
从烟气中分离 SO2 的传统方法是用湿式石灰石洗涤或用胺基吸收剂处理。[6] 重油或煤燃烧产生的烟气通常含有 500-3000 ppm 的 SO2 ,使用这些成熟的方法可将其降低高达 95%。[7] 重要的是,<500 ppm 的痕量 SO2 仍残留在烟气中并排放到大气中。而且,这些残留的 SO2 会使 CO2 吸附剂失活或毒害选择性 NOx 氧化催化剂。[8–10] 因此,进一步降低烟气中的 SO2 含量具有重要的经济和环境意义。多孔材料对 SO2 的可逆物理吸附被视为进一步降低烟气中 SO2 的一种方法。目前,用金属有机骨架(MOF)进行 SO2 吸附引起了人们的浓厚兴趣。 [11–27] 金属有机骨架通常是微孔金属配体配位网络,具有均匀的孔隙率、低密度,并可通过有机连接体(即金属桥接配体)进行高度可调。[28] MOF 在作为吸附剂(特别是 N 2 、 H 2 、 CO 2 、 CH 4 等)用于未来的气体储存和气体分离 [29–31] 或有毒和污染气体的捕获方面的作用受到广泛研究。[32–38] 然而,MOF 通常不具有很高的化学和热液稳定性。[39] MOF 的优势显然在于它们的可设计性,尤其是它们可控的孔径和可修改的孔表面是无与伦比的,然而,其他多孔材料也可能具有良好的 SO 2 吸收特性。典型烟气混合物的主要成分是 N 2 或 CO 2 以及少量 SO 2 (500–3000 ppm)。[7] 对 SO 2 的亲和力优于 CO 2 和 N 2 ,这决定了高选择性,这对于实现高分离效率至关重要。有前途的材料还应具有较高的 SO 2 单气
粒子和细胞。2,3 在传感原理中,单个分析物在电诱导下通过一个充满电解质的小孔(图 1,左图)会导致电解质离子阻塞而导致电阻瞬时可检测到的增加,这在 DNA 测序中可以区分非常相似的核碱基。4 单纳米孔研究通常受到生物通道和孔的启发,它们具有极高的离子选择性和通量,另外还可用作离子信号的开关、放大器和中继系统。5 因此,纳米孔用于制备模拟生物通道特性和控制溶液中离子传输的系统。6–9 此外,单纳米孔提供了一个模型系统来揭示纳米限制引起的新物理和化学现象、传输特性和传输模式。10–12 研究离子、小有机分子、折叠蛋白质、DNA 和 RNA 以及延伸有机聚合物和生物聚合物的传输。由于单纳米孔在生物传感和仿生学中的应用,人们主要在水性和明确定义的溶液中探测单纳米孔。根据应用的不同,单纳米孔的开口直径可为 0.3 至数百纳米,长度可从单个原子层到微米级。多孔膜在技术上与单孔系统截然不同。多孔膜的应用可能需要数千平方米的膜。多孔膜每年创造 100 亿美元的市场,在水基和非水过滤、气体分离、燃料电池和电池组以及包括小分子和折叠蛋白质在内的生物材料纯化(用于食品加工、生物技术和生物医学)中必不可少。15–18 在这些应用中,膜用作选择性屏障,允许一种或多种分子通过,同时主要将其他分子保留在表面上
摘要:膜是化学净化、生物分离和海水淡化的关键部件。传统的聚合物膜普遍存在渗透性和选择性之间的权衡,这严重阻碍了分离性能。纳米多孔原子薄膜(NATM),如石墨烯 NATM,有可能打破这种权衡。由于其独特的二维结构和潜在的纳米孔结构可控性,NATM 有望通过分子筛获得出色的选择性,同时实现极限渗透性。然而,石墨烯膜的概念验证演示和可扩展的分离应用之间存在巨大的选择性差异。在本文中,我们提供了一种可能的解决方案来缩小这种差异,即通过两次连续的等离子体处理分别调整孔密度和孔径。我们证明,通过缩小孔径分布,可以大大提高石墨烯膜的选择性。首先应用低能氩等离子体来使石墨烯中高密度缺陷成核。然后利用受控氧等离子体选择性地将缺陷扩大为具有所需尺寸的纳米孔。该方法具有可扩展性,制备的具有亚纳米孔的 1 cm 2 石墨烯 NATM 可以分离 KCl 和 Allura Red,选择性为 104,磁导率为 1.1 × 10 −6 ms −1 。NATM 中的孔可以进一步从气体选择性亚纳米孔调整到几纳米尺寸。制备的 NATM 在 CO 2 和 N 2 之间的选择性为 35。随着扩大时间的延长,溶菌酶和牛血清白蛋白之间的选择性也可以达到 21.2,渗透性比商用透析膜高出大约四倍。这项研究提供了一种解决方案,可以实现孔径可调的 NATM,其孔径分布较窄,适用于从气体分离或脱盐中的亚纳米到透析中的几纳米的不同分离过程。关键词:纳米多孔石墨烯膜、纳米多孔原子级薄膜 (NATM)、蛋白质选择性膜、等离子蚀刻、纳米孔工程
金属有机骨架 (MOF) 的形成依赖于无机节点和有机连接体通过配位自组装形成周期性配位网络。[1] 无机和有机结构单元的多样性使得 MOF 拓扑结构更加多样化,可以满足催化、药物输送或气体分离等特定材料的要求。[2] 通常,相同的节点和连接体可以由不同的试剂(例如金属盐)形成,并形成具有不同连通性、拓扑结构甚至组成的各种产品。[3] 因此,典型的 MOF 合成可以产生两个或多个相,有时甚至在同一反应混合物中也可以产生两个或多个相。[3b] 在某些情况下,混合相可以出现在同一个粒子中,甚至在同一晶体内,作为共生或纳米级不均匀性,说明了骨架结晶过程和结构的复杂性。[3b] 这种现象在 Zr 基 MOF 中尤为普遍。例如,基于芘的 NU-1000 可以在晶体中心包含多晶型物 NU-901 的结构图案。[4] 尽管 NU-1000 和 NU-901 都由八个相连的 Zr 簇组成,但 NU-901 具有四方孔,其孔体积低于 NU-1000 中的六方孔。[4] 另一方面,UiO-66 经证实通常包含有序缺失簇相 reo UiO-66 的区域,其中四分之一的 Zr-氧簇缺失。[5] 在这两种情况下,这些特性都对孔径产生决定性影响,从而影响材料性能。[3a] 许多合成方案还需要在形成框架之前由前体物种形成无机节点本身,这使情况变得更加复杂。例如,在由 Zr 6 O 4 (OH) 4 团簇构建的 Zr 基 MOF 的合成中,预计六核 Zr-oxo 节点会从 ZrCl 4 或 ZrOCl 2 ·8H 2 O 前体中形成。[6] 最近的研究开始更具体地描述 pH 值、前体来源和浓度以及溶剂类型等合成参数对溶液中形成的簇结构的影响。[7]
用于气体和蒸气分离膜的气体分离的膜是一项良好的,节能和不断发展的技术。使用多硫酮的空心纤维膜(带有商业名称Prism)用于H 2恢复的天然气分离技术首先是由Preaea Inc.(现在是Air Products的子公司)(Lonsdale,1982; Air Products Advanced Pri)引入并于1979年成功进行了商业化。从那时起,气体分离膜市场一直在迅速增长,并有望随着技术的进步而进一步增长。在过去的几十年中,多种聚合物膜(例如多硫酮,聚酰亚胺,乙酸纤维素)和聚(二甲基硅氧烷)硅橡胶已用于气体或蒸气分离(Galizia等,2017)。特定的应用包括1)从氮,甲烷等中回收氢。; 2)氧气产生氮; 3)天然气产生甲烷; 4)从氮气中恢复(例如Olefins的蒸气); 5)去除挥发性有机化合物(VOC); 6)空气和天然气脱水; 7)olefin/paraffin(例如乙烯/乙烷,丙烯/丙烷)分离; 8)烃(甲烷,乙烷,丙烷等)分离; 9)二氧化碳捕获来自频道气体(主要是氮)。这些应用已受到显着关注,并解释了大多数基于膜的天然气分离行业。分离技术和材料设计的进步将有助于膜领域的生长和发展。微孔无机膜可以有效地用于催化反应器和煤气燃料等应用中。基于致密的陶瓷膜,致密的金属膜和微孔膜的无机膜也进行了广泛的研究(Lin,2019)。通常用于制造微孔无机膜的材料包括氧化铝(Al 2 O 3),二氧化硅(SIO 2),氧化氧化氧化氧化膜(ZRO 2),沸石和碳。最近,由于有机和无机材料的协同作用,由于有机和无机材料的协同效应,多孔无机填充剂分散在密集的聚合物基质中。各种多孔无机纳米材料,例如氧化石墨烯(GO)和金属有机框架(MOF)已被用作MMMS中的填充剂,从而提高了渗透和分离特性(Qiao等人,2020年)。
配位或共价键。通过精心选择构建块以及底层网络拓扑,可以很好地控制MOF和COF中纳米孔的形状和大小,使MOF和COF成为气体分离和储存、能量转换、生物医药和催化等应用领域的有前途的材料。此外,多孔碳球、中空多壳结构和晶体多孔有机盐因其优异的催化活性、电/光化学性质和离子电导率在过去几年中引起了广泛关注。功能多孔材料近期进展的主要驱动力之一是国际合作和跨学科整合。来自不同国家/地区、具有不同背景和观点的研究人员的加入将促进深度跨学科整合,极大地促进解决全球问题的科学创新。2017年,“功能纳米多孔材料”国际合作项目在中国吉林大学启动。在此项目框架下,建立了一个国际合作网络,旨在通过功能多孔材料的设计、合成和应用来解决能源和环境挑战。迄今为止,已有来自20多个国家/地区的60多位研究人员参与了该项目,为近年来功能多孔材料的繁荣做出了重要贡献。为了展示此研究项目的合作成果,Advanced Materials和Angewandte Chemie联合推出了功能多孔材料化学专刊。Advanced Materials专刊刊登了18篇综述,涵盖了各类功能多孔材料的合成、表征和应用。合成化学的发展为多孔功能材料的最新进展奠定了基础。特别是多级结构(文章编号2004690)和水稳定性沸石(文章编号2003264)的新型合成策略、聚合物胶体合成多孔碳球(文章编号2002475)、高连通性稳健MOF网络的设计(文章编号2004414)以及高通量和计算机辅助方法(文章编号2002780)等,促进了各种多孔材料的发现。同时,固体核磁共振(文章编号2002879)和X射线吸附光谱(文章编号2002910)等高分辨率和原位表征技术的进展,为揭示功能多孔材料的结构与性能关系提供了重要线索,为其在不同场景中的应用提供了重要指导。催化是多孔材料最重要的应用之一。 尤其,近年来,沸石在许多工业上重要且可持续的催化过程中的应用引起了广泛关注,例如 C1 分子的催化转化(文章编号 2002927),