为了实现大气测量的稳健性和可靠性,需要改进校准程序和受控实验室观测设施。本文介绍了一种专用的环境模拟器,它能够控制风流、压力、温度和气体成分,目的是允许在各种环境条件下测试和校准气象传感器。奥胡斯大学的环境风洞模拟器 [奥胡斯风洞模拟器 II (AWTSII)] 是一个独特的原型设施 (Merrison 2011; Rasmussen 等人 2011),代表了从近地表到高海拔(平流层)再到大约 90 公里高度的中间层以下的环境条件的“最先进”模拟技术。另外两个低压风洞设施正在运行;虽然通常用于火星研究和传感器测试(Greeley 和 Iversen 1985;Wilson 等人 2008),但它们不用于陆地计量或气象学。低温风洞在航空航天和汽车工业中很常见,但尚未应用于计量学。AWTSII 已广泛用于风速计系统的测试和行星环境研究(与欧洲空间局合作)
为了实现大气测量的稳健性和可靠性,需要改进校准程序和受控实验室观测设施。本文介绍了一种专用的环境模拟器,它能够控制风流、压力、温度和气体成分,目的是允许在各种环境条件下测试和校准气象传感器。奥胡斯大学的环境风洞模拟器 [奥胡斯风洞模拟器 II (AWTSII)] 是一个独特的原型设施 (Merrison 2011; Rasmussen 等人2011),代表了从近地表到高海拔(平流层)再到大约 90 公里高度的中间层以下的环境条件模拟的“最先进技术”。另外两个低压风洞设施正在运行;虽然通常用于火星研究和传感器测试(Greeley 和 Iversen 1985;Wilson 等人2008),但它们不用于陆地计量或气象学。低温风洞在航空航天和汽车工业中很常见,但尚未应用于计量学。AWTSII 已广泛应用于风速计系统的测试和行星环境研究 [与欧洲空间局合作
片上纳米量波导传感器是一种有前途的解决方案,用于使用中红外(miR)区域中的吸收菌印刷物进行微型化和无标记的气体混合物检测。然而,由于吸收光谱的重叠,有机气体混合物的定量检测和分析仍然具有挑战性,报道较少。在这里,将人工智能(AI)辅助波导“光子鼻”作为MIR中的气体混合物分析的增强传感平台提出。凭借支持的波导设计和机器学习算法的帮助,将二元有机气体混合物的miR吸收光谱与任意混合率区分开,并分解为单组分光谱以进行浓度预测。结果,实现了19个混合比的93.57%的分类。此外,气体混合物频谱分解和浓度预测显示,平均根平方误差为2.44 vol%。这项工作证明了MiR波导平台的更广泛的感测和分析能力的潜力,用于多个有机气体成分,用于MIR片段光谱。
这项工作旨在评估和展示市面上可买到的、且在必要时可开发的材料,用于高效捕获和减少 WTP 低活性废物 (LAW) 和高放射性废物 (HLW) 设施中熔炉废气流中的 Hg 和 I。在 23 财年,完成了对文献和商业制造商的广泛审查,以确定可对这些污染物进行单次和双重捕获的候选材料 (Fountain 等人,2022 年)。这些材料的筛选测试已完成,包括静态暴露测试以评估对 Hg 和 I 的吸附能力,然后使用包含 Hg、I、空气和 H 2 O 的简化废气成分进行初步动态测试。现在有必要使用经过筛选的候选材料在动态和原型流通测试下进行技术成熟度研究,这些材料具有复杂的气体成分。这一范围将解决与 Hg 和 129 I 相关的近期 WTP LAW 废气技术需求以及未来的 WTP HLW 废气减排需求。
摘要 - 有效的食品包装提供了许多目的。它可以用作容纳和运输食品的容器,以及保护食物免受外部污染的障碍,例如水,光,气味,细菌,灰尘和机械损坏,通过保持食物质量。包装还可能包括保持产品的水分含量或气体成分一致的障碍。此外,便利性在包装中至关重要,并且渴望快速打开,分发和重新密封包装,以维持产品质量,直到充分消费。为了促进交易,鼓励销售并告知内容和营养属性,包装必须具有交流性。用于储存食物的范围很大,可用于修改的氛围包装,智能包装,主动包装和受控氛围包装。主动包装具有多种用途,包括二氧化碳吸收剂和发射器,氧气清除剂,抗菌剂和水分控制剂。智能包装是智能包装的另一个术语。可食用的包装,自冷和自热包装,微包装和水溶性包装是包装材料的一些进步。
6与先前的估计相比,促使LNG生产能力增加的主要因素是更好地理解各种气体组成的液化过程关键组成部分的效率和操作能力,并通过习惯的设计进度和高级模拟(静态和动态)获得了习惯。例如,预期的气体成分比以前预期的要瘦,这促进了更高的功率需求效率(每吨液化天然气千瓦时)。此外,在设计条件下,液化列车中的31兆瓦混合制冷剂压缩机电动机将以不足的容量运行,在充分动力时,额外的保证金超过了保证的LNG生产能力。一起,这些因素表明,在最佳条件下,包括最佳的环境温度和维护最低的年限,该项目的液化液液生产能力将比以前估计的更大。plaquemines LNG预计,峰值水平上的液化天然气产量增加不会改变其先前审查和批准的危害分析的结论或结果,或者以其他方式对其符合适用安全要求的不利影响。plaquemines lng预计这些问题将成为FERC审查的主题,即提议的液化峰值能力提高。
除了声速之外,还有一个非常有趣的数据可以了解气体成分;MiniSonic- PSD(或 ISD)越来越多地用于新项目中的清管器检测。天然气管道主要使用泡沫清管器来清除油或其他沉积物。泡沫清管器不太硬,其速度与流速一样快,这给机械清管器信号检测器带来了问题。同样,通过清管器噪音听觉检测(一些公司称此类检测器为超声波)可以对新的泡沫清管器进行检测,但这种噪音可能低于使用过的清管器的环境噪音,存在无法检测的风险。因此,在这种情况下,通过超声波屏障进行检测具有许多优势。唯一的条件是要有良好的超声波信号电平。- 可以使用两个夹式探头,它们以相同的直径彼此相对安装,一个是发射器,另一个是接收器。信号限制来自气体压力(需要高压率)和管道厚度,这限制了频率选择并可能传输噪声。因此,在安装之前必须进行初步测试。- 确保信号的最佳解决方案是安装插入式传感器并让其刚好与管道内表面对齐。
正在为新的和可再生能源进行抽象的广泛研究。氢正在受到特殊关注,并且对包括天然气,煤炭,废物和生物质在内的升级能源进行研究。催化反应通常对于从这些资源中产生高价值化学物质至关重要。水– gas偏移(WGS,CO + H 2 O→CO 2 + H 2)反应是提升各种类型的合成气体的最有用的催化途径之一。当前,WGS反应的应用范围已进一步扩展到废物,生物质和煤炭衍生的合成气体的升级。但是,应通过考虑其特征来仔细定制反应条件和催化剂。在这项研究中,我们专注于WGS反应的反应条件和催化剂,这些反应在过去十年中处理了各种类型的进料气体,以了解发展的进展。基于分类(通过进料气体的类型),我们仔细比较了测试的催化剂,容量,温度,进料气体成分,蒸汽与碳比率和催化剂性能。我们可以洞悉每种类型的进料气源中面向目标WGS反应的当前研究趋势和观点,这可以为定制提供线索。
收获后的损失和食物浪费已成为全球粮食供应链中的关键挑战,导致经济损失,环境退化和粮食不安全。本文探讨了收获后生物技术和基因工程的创新应用,作为有前途的解决方案,可以通过扩大易腐产品的货架并最大程度地减少食品浪费来解决这些问题。基因工程技术的进步为开发农作物的发展铺平了道路,对害虫,疾病和环境压力的抗性增强。此外,对成熟和衰老相关的基因的操纵使科学家可以延长保质期的水果和蔬菜。这些转基因的生物(GMO)具有改善的收获后特征,为运输,存储和消费提供了更长的窗口。生物技术干预措施还包括使用生物防治剂和有益的微生物来抑制收获后病原体,从而减少变质和衰变。生物托管剂的发展,例如抗菌肽和天然化合物,为传统化学防腐剂提供了环保的替代品,这既有助于食品安全和可持续性。此外,智能包装技术与遗传修饰的整合可增强对存储和运输过程中环境条件的监视和控制。配备有传感器的智能包装材料可以检测温度,湿度和气体成分的变化,从而实现实时调整以延长易腐产品的新鲜度。
收获后损失和食物浪费已成为全球食品供应链中的关键挑战,导致经济损失、环境恶化和粮食不安全。本文探讨了收获后生物技术和基因工程的创新应用,通过延长易腐产品的保质期和最大限度地减少食物浪费,作为解决这些问题的有希望的解决方案。基因工程技术的进步为开发具有增强的抗病虫害和环境压力的作物铺平了道路。此外,通过操纵与成熟和衰老相关的基因,科学家能够设计出保质期更长的水果和蔬菜。这些转基因生物 (GMO) 表现出更好的收获后特性,为运输、储存和消费提供了更长的时间窗口。生物技术干预还包括使用生物防治剂和有益微生物来抑制收获后病原体,从而减少腐败和腐烂。抗菌肽和天然化合物等生物防腐剂的开发为传统化学防腐剂提供了一种环保的替代品,有助于食品安全和可持续性。此外,智能包装技术与基因改造的结合增强了对储存和运输过程中环境条件的监测和控制。配备传感器的智能包装材料可以检测温度、湿度和气体成分的变化,从而实现实时调整以延长易腐货物的新鲜度。关键词:环境;环保;储存;生物防腐剂;收获后;易腐货物;