我们将物质的第四个状态称为血浆,表明电离,绝中性气体。气体介质中的电排放是一种正常且简便的方法,可以将气体转化为中等压力条件下的血浆。电子温度,电子密度和气体温度表征了血浆的质量。尤其是在电子温度和气体温度方面,我们有设计放电的空间为热等离子体(电子和气体温度均处于平衡状态)或非热等离子体(比气温高于气温的量级高)。这表明可以在一定程度上对受电子温度和气温控制的电子撞击反应和热化学作用组成的血浆化学作用。在这方面,我们认为血浆技术可以被视为一种多功能反应平台,可以在电动的未来中替换并增强传统燃烧和基于催化剂的燃烧。这种观点尤其突出了低温等离子体技术领域的燃烧社区的机会,详细介绍了等离子体化学的潜力及其与燃烧研究的相似之处。
高温选项允许 SM425 用于测量和控制均热炉和再热炉中的氧气水平,或样品气体温度高于 1100°F 但低于 2500°F 的其他位置。此选项包括经过修改的 SM425,带有碳化硅或不锈钢探头,允许样品气流通过位于管道外部的检测器。使用此选项,传感器位于烟气遏制管道外部,但与烟囱紧密耦合。这可确保样品运输路径最小化,并且无需采样或调节设备。气动喷射器或自然通风用于促进样品在外部安装的传感器包周围流动,并允许在存在负压烟道条件的情况下使用高温装置。
规范。可在飞行运营安全门户上找到 L3Harris 的报告,以下是执行摘要的摘录 执行摘要 本月分析的航班数量 = 152 注意:一个月内分析的航班数量不一定与飞行的航班数量相同,因为可能已上传和处理旧数据。本月总体数据捕获 = 0.0% 本月捕获的航班数量 = 152 本月 3 级事件发生率 = 934.21 本月 3 级事件计数 = 142 发生率最高的 3 级事件 = 发动机扭矩(起飞)低 3 级事件类别发生率最高 = 发动机 3 级进近和着陆事件数量最多的机场/跑道 = FBSK- 08 发生 4 次以上 3 级事件的航班数量 = 0 发生率最高的维护 3 级事件 = 发动机气体温度(启动)高 可能的 MOR 数量 = 70
冷大气压等离子体 (CAPP) 已成为一种多功能工具,应用范围从材料加工到等离子体医学 [1]。近年来,针对大气压冷等离子体装置的研究出现了显著增长 [2, 3]。这些装置的优点是无需使用昂贵且笨重的真空设备 [4]。此外,由于其气体温度低且产生的活性物质,这种类型的等离子体源具有从工业到生物学等各种应用 [5,6]。大气压冷等离子体蚀刻已在各个行业中得到广泛应用。在微电子领域,它用于半导体材料的精确和高分辨率蚀刻,从而能够生产更小、更高效的电子设备。在汽车工业中,它在改善粘合剂粘合和表面处理、提高部件的耐用性和性能方面发挥着作用 [7,8]。医疗领域受益于其对医疗器械进行消毒的能力,确保了患者的安全 [9]。在包装领域,它有助于表面活化,从而提高油墨和涂层的附着力。此外,它的环保特性符合可持续发展目标,使得大气压冷等离子蚀刻成为现代工业过程中越来越有价值的工具。
通过对1:15比例隧道火灾试验数据的分析,研究了采用纵向通风方式的隧道中多车辆间的火灾蔓延特性。在此基础上,提出了一种简单的多火源隧道气体温度理论模型,并用于试验数据的分析。结果表明,对于位于火灾下游相同距离的物体(木桩),火灾沿隧道蔓延的速度越来越快。通过模型和全尺寸隧道火灾试验对多火源简化温度模型进行了验证。进一步利用该模型预测了火灾蔓延至第二和第三个物体的临界条件。与试验数据的对比表明,平均过热温度465 K(或等效入射热流密度18.7 kW/m 2 )可作为火灾蔓延的判据,并通过其他模型试验和全尺寸试验进一步验证了这一点。结果表明,临界火灾蔓延距离随热释放速率的增加而单调增加,随隧道周长的增加而减小。对于热释放速率相等的多火源,随着前两个火源间距的增加,第二个火源到第三个火源的临界火蔓延距离减小,但第一个火源到第三个火源的总火蔓延距离增大;如果下游火源处的总热释放速率大于前一个火源处的总热释放速率,临界火蔓延距离变大。
绝大多数星形星系都被星际介质弹出的大量气体包围。紫外线的吸收和发射线代表强大的诊断,以通过氢和金属离子的谐振过渡来限制这些流量的凉爽相。对这些观察结果的解释通常很困难,因为它需要对气体中连续性和发射线传播的详细建模。为了实现这一目标,我们提供了一个大约20000个模拟光谱的大型公共网格,其中包括与Mg II,C II,C II,SI II和Fe II相关的H ilyα和五个金属过渡,可在线访问。光谱已经使用Rascas Monte Carlo辐射传输代码计算出5760个理想化的球形对称配置,围绕中心点源发射,并以其柱密度,多普勒参数,尘埃不透明,风速,风速以及各种密度和速度渐变为特征。旨在预测和解释LYα和金属线专利线,我们的网格表现出广泛的谐振吸收和发射特征,以及荧光线。我们说明了如何通过对观察到的LYα,C II和SI II光谱进行关节建模来帮助更好地限制风质。使用多云的模拟和病毒缩放关系,我们还表明,即使培养基被高度离子化,也有望成为T≈104-10 5 K的气体的忠实示踪剂。发现C II探测与LYα相同的温度范围,而其他金属线仅痕迹冷却器相(T≈104 K)。由于它们的气体不透明度在很大程度上取决于气体温度,入射辐射场,金属性和粉尘耗尽,因此我们要警告光学上的金属线不一定源自低H I柱密度,并且可能不会准确探测Lyman Continuum Continuum Continuum泄漏。
抽象可再生能源在电力供应中起着越来越重要的作用。在欧洲的背景下,可再生能源在供暖部门仍然起着较小的作用,2018年约有21%,尽管该部门占最终能源消耗的50%以上(世界能源委员会,2020年)。为了使加热部门脱碳,将高温热泵(HTHP)的整合到可再生能源系统中是一种有希望的方法。潜在的应用领域是地热系统或工业过程中的废热。目标是利用HTHP来保证在峰值载荷期间的覆盖范围,增强可再生系统的热量输出或实现废物热利用。这种系统集成需要灵活性和可靠的零件负载特性,以抵消需求中的显着波动。本研究旨在在实验室进行实验量表检查HTHP的零件载荷性能。测试系统代表HTHP,热量输出为35 kW,供应温度高达130°C。用作工作培养基的制冷剂Trans-1-氯-3,3-3-3-三氟丙烯(R1233ZD(E)),具有低全球变暖潜力(GWP)和臭氧耗竭潜力(ODP)。实施了内部热交换器(IHX)以及水冷气缸盖(CHC),以研究它们优化测试钻机性能的潜力。在50°C的热源温度和100°C的供应温度下,在定义的基本场景中检查了系统的零件负载行为。此外,供应温度的升高高达130°C与(无)CHC结合使用。分析集中在安装的气缸盖冷却的影响上。结果表明,气缸盖冷却可降低往复式压缩机的排放气体温度,从而确保材料友好型运行,同时可以回收耗散的热量并将系统效率提高高达8%。另外,可以确定对传热的主要影响,例如冷凝器中的捏点的减小。然后,可以在经济和技术优化的背景下从中得出进一步的建议。