1. 执行摘要——提供 2023 年需求侧管理和有益电气化计划整体战略方向的高层概述;提供计划和产品级预测和预算;按成本类别确定预算;并解决客户参与问题。 2. 计划和产品摘要——每个计划领域的高层摘要,后跟每个产品的具体信息。 3. 成本效益分析——提供公司 2023 年需求侧管理和有益电气化产品的电力和天然气组合和计划成本效益分析结果。 4. 附录——列出首字母缩略词列表;关键术语;产品排名;预算类别描述;避免的成本;天然气需求侧管理 $/Therm 和损失收入确认方法;电力负荷形状文档;以及技术参考手册(视同节省和预测技术假设)。
执行摘要 为协助 Dominion Energy Virginia(Dominion Energy 或公司)规划满足《2018 年电网转型和安全法案》(GTSA)和《弗吉尼亚清洁经济法案》(VCEA)中概述的立法要求,Cadmus 制定了一项长期计划(也称为该计划),概述了面向客户的需求侧管理 (DSM) 计划的框架以及转变现有运营环境以实现其目标的途径。该计划是广泛研究、利益相关者意见和定量分析的成果,Cadmus 利用这些成果概述了精简、经济高效的 DSM 计划结构并推荐了其他行动。该结构将 Dominion Energy 现有的 DSM 计划组合整合为一套更具凝聚力的产品,帮助其客户在家庭和企业中安装能源效率升级产品。Cadmus 分析了过渡到该拟议计划结构并结合实施广泛的客户宣传活动对 Dominion Energy 实现其目标的能力可能产生的节能影响。
1. 执行摘要——概述了 2021-22 年 DSM 总体计划的战略方向;提供了计划和产品级目标和预算;按成本类别确定预算;并解决了客户参与问题。 2. 计划和产品摘要——每个计划领域的高级摘要,随后是每个 DSM 产品的具体信息。 3. 成本效益分析——提供 2021 年和 2022 年电力和天然气组合和计划成本效益分析结果。 4. 附录——列出首字母缩略词列表;关键术语;产品排名;预算类别描述;避免的成本;天然气 DSM $/Therm 和收入损失确认(“ALR”)方法;电力负荷形状文档;和技术参考手册(视同节省和预测技术假设)。
,而不仅仅是目前。这是指它们无法生成半组(当G仅取决于X,即自主情况时)或在r d上的两参数半集团(非自主情况)。此问题具有某种兴趣,因为通常根据某种形式的动力学系统来定义数学上的定义[10,11]。有趣的是,Cong&Tuan [1]确实表明,自动caputo fde的解决方案在标量和多维三角形矢量场的R D上生成了“非局部”动力系统。这是从[2,定理3.5]的事实表明,此类FDE的解决方案在有限的时间内不相交,而溶液映射x 0 7→s t(x 0)在每个t≥0的r d上形成了双重试验。后来的Doan&Kloeden [5]使用了卖出[13]的Volterra积分方程式的销售思想[13],以表明自动caputo fde在连续函数F:r +→r d的空间c上产生半组,因此自主半动态系统,赋予了与Compact compact Subscts of Compact Subsists的拓扑。这将其扩展到Cui&Kloeden [3]在空间C×P上的偏斜流量,并带有驱动系统(1)的非自治Caputo FDE。
膜曝气生物膜反应器 (MABR) 是一种新兴的营养物去除技术;然而,其去除率和氧转移效率之间仍然存在权衡。本研究比较了主流废水氨水平下在连续和间歇曝气模式下运行的硝化流通式 MABR。间歇曝气 MABR 保持最大硝化速率,包括在无曝气期间允许膜气体侧的氧分压大幅下降的条件下。所有反应器的一氧化二氮排放量相当,约占转化氨的 20%。间歇曝气增加了阿替洛尔的转化速率常数,但不影响磺胺甲恶唑的去除。另外七种微量有机化学物质均未被任何反应器生物降解。间歇曝气 MABR 中的氨氧化细菌以亚硝化螺菌为主,此前研究表明,亚硝化螺菌在低氧浓度下数量丰富,可在变化的条件下提供反应器稳定性。我们的研究结果表明,间歇曝气流通式 MABR 可实现高硝化速率和氧转移效率,突出了空气供应中断对一氧化二氮排放和痕量有机化学生物转化的可能影响。
01001101001011001010011011011100101001010011001100010100110010101001101 01001100110001100001000111001010100010110100100100100101011100100101010 0100101001100101001101011001001011010001010111001001010101000101 10011010010101000101110010101010001010 01001101001011001010011011011100101001 010011001100010100110010101001101010011001100011000010001110010101000 101101001001001001010111001001010100100101001100101001 101011001001011010001010111001001010101000 10110011010010101000101110010101010001010 010011
抽象进行性阻塞性肺部疾病继发于慢性气道感染,再加上宿主免疫,是囊性纤维化发病率和死亡率的主要原因(CF)。在患有CF(PWCF)的人的气道中发现的经典病原体包括铜绿假单胞菌,金黄色葡萄球菌,伯克霍尔德cepacia complect,Achromobacter物种和嗜血杆菌的富集。虽然传统的呼吸培养培养物集中在这种有限的病原体上,但使用综合文化和与文化无关的分子方法的使用表现出了复杂的高度个性化的微生物群落。流失细菌群落多样性和丰富性,与传统的CF病原体(如Burkholderia或pseudomonas)相对增加的分类单元相对增加,长期以来一直被认为是疾病进展的标志。这些经典病原体的获取被视为晚期疾病的预兆,并假定是由经常发生的急性肺部恶化驱动的反复和频繁的抗生素暴露驱动的。最近,CF跨膜电导调节剂(CFTR)调节仪,旨在增强或恢复蛋白质水平/功能降低的小分子,已成功开发并具有深远的影响疾病。尽管有多种临床益处,但在PWCF中持续存在结构性肺损伤和结构性慢性气道感染。在本文中,我们回顾了普华永道的微生物流行病学,重点是我们对调节剂时代中对这些感染的不断发展的理解,并确定感染监视和临床管理中未来的挑战。
气孔是植物与植物病原体之间的战场。植物可以感知病原体,从而诱导气孔关闭,而病原体则可以利用其植物毒素和诱导物克服这种免疫反应。在这篇综述中,我们总结了气孔-病原体相互作用的新发现。最近的研究表明,在细菌感染过程中,气孔运动继续以关闭-打开-关闭-打开的模式发生,这为气孔免疫带来了新的认识。此外,除了研究透彻的拟南芥-假单胞菌病原系统之外,典型的模式触发免疫途径和离子通道活动似乎在植物-病原体相互作用中很常见。这些发展有助于实现作物改良的目标。研究完整叶片的新技术和可用组学数据集的进展为理解气孔门的战斗提供了新方法。未来的研究应致力于进一步探讨与气孔免疫相关的防御与生长之间的权衡,因为目前我们对它知之甚少。
记录版本:该预印本的版本于 2024 年 1 月 10 日在《国际先进制造技术杂志》上发表。已发布的版本请参阅 https://doi.org/10.1007/s00170-024-12964-7 。
