由于气候在近几十年来变暖,阿拉斯加经历了各种高影响力的极端事件,包括热浪,野火,沿海风暴和寒冷的雨水。由于预计变暖将继续,因此在计划适应动作和建立弹性时,必须考虑将来的变化。在这项研究中,我们综合了有关阿拉斯加事件的未来变化的信息,该信息是从区域气候模型模拟的集合中进行的,作为北极 - 局部的一部分(协调的区域气候降尺度实验)。根据世界气候研究计划的气候变化检测和指数(ETCCDI)开发的13个极端事件指数(ETCCDI),从阿拉斯加的北极 - 局部输出中进行了评估。的13个指数,六个与温度有关,五个与总降水量,一个与风,一个降雪。在阿拉斯加七个不同气候区域中的位置的结果包括一年中五个最热和最冷的日子,在温度阈值中,温度阈值的大幅度增加(5˚C -10°C),温暖的咒语持续时间和冷咒语持续时间大大增加。寒冷的日温度阈值的变化总体上大于炎热的日温度阈值的变化,这与冬季在冬季的变暖的预测一致,而阿拉斯加的年度最大最大1天和5天的降水量以及每年的连续潮湿天数预计在所有位置都会增加。大雪日和高风速的指数显示出不同的变化,尽管结果表明在更北部地区的大雪日增加,沿海地区大风天增加。在高发射(RCP 8.5)发射方案下,极端事件指数的变化持续到2100,而这些变化通常在下部排放(RCP 4.5)方案下稳定。
生态及其与人,自然资源,其可持续管理和保护的相关性。物理和社会环境是农作物分布和生产的因素。农业生态学;裁剪模式作为环境的指标。环境污染以及对农作物,动物和人类的危害。气候变化 - 国际公约和全球倡议。温室效应和全球变暖。生态系统分析的高级工具 - 遥感(RS)和地理信息系统(GIS)。该国不同农业气候区的种植模式。高田和短期品种对裁剪模式转移的影响。各种种植和农业系统的概念。有机和精确耕作。生产重要谷物,豆类,油籽,纤维,糖,商业和饲料作物的实践包装。各种类型的林业种植园的重要特征和范围,例如社会林业,农业森林和天然林。森林植物的传播。森林产品。农业林业和增值。保护森林动植物和动植物。杂草,它们的特征,传播和与各种作物的关联;它们的乘法;杂草的文化,生物学和化学控制。土壤 - 物理,化学和生物学特性。土壤形成的过程和因素。印度土壤。土壤的矿物质和有机成分及其在维持土壤生产率中的作用。生物肥料。土壤和植物中必不可少的植物营养和其他有益元素。土壤生育能力,土壤测试和肥料建议,综合养分管理的原则。土壤中氮的损失,淹没的水稻土壤中的氮利用效率,土壤中的氮固定。有效的磷和钾的使用。问题土壤及其填海。影响温室气体排放的土壤因素。土壤保护,综合流域管理。土壤侵蚀及其管理。干地农业及其问题。稳定雨水区农业生产的技术。与作物有关的水效效率
增加土壤有机碳(SOC)赋予土壤健康,生物多样性,基础碳固执并改善土地退化的益处。一个建议是增加SOC,以使SOC与粘土比(SOC/粘土)超过1/13,但仅基于粘土的SOC水平正常化就会产生误导性的土壤结构的迹象,并有可能存储额外的碳。在Poeplau&Don(2023)的工作基础上为针对预测的SOC进行了基准测试,我们提出了一个替代指标:观察到的与“典型” SOC(O/T SOC)之间的比率用于泛欧应用。在这里,“典型” SOC是不同pedo气候区域中的平均集中度,PCZ(与现有的SOC指标不同,在欧洲融合了土地覆盖物和气候以及土壤质地),由矿物质(<20%有机物)表层(<20%的有机物)表层(0-20 cm)确定,在2009年至2018年,在欧洲的Lucas,欧洲最大的土壤监控计划(lucas)的lucas Monitor Monitorsing(n = n55)。回归树建模得出的12个PCZ,典型的SOC值范围为5.99 - 39.65 g kg -1。与SOC/粘土等级进行比较的新索引类是从每个PCZ的SO/T SOC分布的四分位数中建立的;这些被称为:“低”(低于25%),“中级”(第25%和50个百分点),“高”(在第50%和第75个百分位数之间)和“非常高”(高于第75个百分位数)。与SOC/粘土相比,O/T SOC对粘土含量,土地覆盖和气候的敏感性较小,地理上偏斜的偏差,并且更好地反映了土壤孔隙率和SOC库存的差异,支持2个EU土壤健康任务目标(巩固SOC库存;改善土壤
太阳能产业协会 2020 年太阳能市场洞察年度回顾报告称,2020 年安装的住宅太阳能光伏容量较 2019 年增长了 10%,低于 2019 年较 2018 年增长 16% 的水平。最近,在 SEIA 2021 年第三季度太阳能洞察报告中,他们报告称,2021 年新安装的住宅太阳能光伏有望再增长 21%,安装容量预计将达到 3.9GW。尽管激励税收抵免逐步取消,但住宅现场太阳能光伏的需求预计仍将增长。住宅太阳能光伏的持续增长表明,它是一种有效的技术,可以降低建筑物的能源成本和温室气体排放。该提案描述了在施工时必须安装的规定太阳能光伏的要求。PNNL 的分析表明,现场可再生电力发电对于所有低层多户建筑以及大多数单户住宅和一到两个单元的联排别墅而言都是具有成本效益的。分析是使用每个气候区中 PNNL 的住宅原型进行的。容量要求是通过计算限制电力输出回电网的最高现场太阳能光伏容量来确定的。用于确定这些容量的阈值是电网输出限制,该限制低于建筑物年度总用电量的 0.5%。对每小时结果的审查表明,设定零过剩生产的硬性限制是不现实的。在计算成本效益时,不会将输出回电网的电力计入。电网输出按小时计算。拟议的要求减少了从电网购买的能源,这将有助于减少温室气体 (GHG) 排放和建筑物业主的能源成本。
西班牙是欧盟第二大国家,拥有506,000平方公里,在2024年拥有48,592,909名居民,人口密度超过93 km 2,低于欧盟平均水平。西班牙的海岸非常大,海岸线约为8,000公里,其中包括其11个主要岛屿和一个超过100万平方公里的海洋地区,分为大西洋和地中海。它包括大陆半岛,以及火山大西洋金丝雀群岛和地中海巴利阿里群岛。西班牙的平均高度相对较高,高度超过海拔600米,因此具有很大的河流,气候区和地形特征。西班牙河流的天然河流状况主要取决于降水模式,在该降水模式下,雨水被转化为地表水或地下水。可以观察到降水的鲜明对比:直接受大西洋影响的北部和西北有大量降雨,没有可区分的干旱季节。该区域有时被称为EspañaHúmeda或湿西班牙,年降水量超过600毫米,偶尔上升至2,000毫米。该国的其余部分主要干燥,年降水量小于600毫米。西班牙东南部是半干旱的,年度降水量低于300毫米,在某些地方让人想起撒哈拉沙漠。因此,该国有74%的人有荒漠化的风险。农业使用了几乎一半的领土,并且高度多样,在领土之间的耕作类型上存在显着差异。有机农业的份额约为11%,略高于欧盟平均9%。西班牙负责欧盟生产橄榄的一半和三分之一的水果。农业是该国最大的水上用户,并且高度依赖灌溉(占农田的20%)。城市废水处理和非常高的旅游业在该国也构成了重大挑战。就自然资本而言,西班牙是欧盟的出色参考,并拥有非常丰富的生物多样性。目前,该国28%的地面土地被指定为保护区,略高于欧盟的价值26.4%。
摘要:由于气候变化,预算和可用资源的现实和可用资源的现实极大地影响了可持续性。这项研究分析了三种太阳能光伏(PV)可再生能源(RE)系统的技术和经济可行性; (i)太阳能独立,是一种非网格连接的建筑屋顶安装的结构,(ii)太阳能屋顶,一种网格连接的建筑屋顶安装的结构,(III)太阳能农场,太阳能农场,一个在三个热带气候区域中的网格连接的土地安装的结构。技术科学和经济工具,包括生命周期评估(LCA)和生命周期成本评估(LCCA),以及来自马来西亚案例研究的综合框架,应用于类似的气候区域,泰国和印度尼西亚。使用代理技术和估计数据定义了短期,未来扩展的方案。确定了这种情况的环境位置,比较了环境影响,并分析了技术经济输出。这项研究的范围是摇篮到坟墓。升级的能源成本(LCOE)受到了很大的影响。尽管土地利用影响有所增加,但随着时间的推移,CO 2的排放量增加了,该国的能源组合会累积,这需要需要长期采购碳和投资回报。与其他类型的安装相比,与其他类型的安装相比,可易于易于易于使用的屋顶安装的系统达到了最低的LCOE,范围从0.0491 usd/kWh到0.0605 USD/kWh,低于6%的折扣率。平均在7 - 10年之间的简单回报(SPB)时间取决于系统产生的年度功率,估计能量回报为0.40 - 0.55年,普通多晶光伏技术。因此,通过确保长时间内的低降解率为0.2%来维持整个系统对于为投资者和环境带来收益至关重要。新兴技术正在以指数级的速度发展,以填补建立可再生能源作为有吸引力的商业计划的差距。生命周期评估被认为是评估可再生能源环境影响的绝佳工具。
摘要 发展中国家(如秘鲁)的大多数农村社区尚未接入电网。利用可用的可再生资源(如风能和太阳能)和柴油发动机的混合能源生产被视为这些地区电气化的一种经济可行且环境友好的替代方案。由于缺乏针对秘鲁离网电气化混合系统(光伏-风能-柴油)的技术经济分析的全面调查,本研究重点是确定这些系统在秘鲁偏远村庄的最佳配置。因此,我们选定了三个无法接入电网的小社区(Campo serio、El potrero 和 Silicucho),它们位于秘鲁的不同气候区,作为案例研究。研究考虑了七种不同的配置,包括单一组件系统(太阳能、风能和柴油)和混合系统。在考虑社区的气象数据和负荷特性以及柴油价格和零部件成本的同时,HOMER 软件用于确定系统的最佳规模 [从而实现最低净现值 (NPC)],同时考虑不同的情景。然后,考虑其他最先进的经济指标 [初始资本成本、年度总运营成本和能源成本 (COE)]、发电分数和由此产生的二氧化碳排放量,比较所获得的配置。所得结果表明,对于所有被调查的社区,混合太阳能-风能-柴油系统是最经济可行的方案。考虑后一种情形,获得的最佳配置导致 Campo serio 的 NPC 为 227,335 美元(COE:0.478 美元/千瓦时),El potrero 的 NPC 为 183,851 美元(COE:0.460 美元/千瓦时),Silicucho 的 NPC 为 146,583 美元(COE:0.504 美元/千瓦时)。此外,采用最佳配置,Campo serio 和 Silicucho 的可再生部分(相对于总发电量)为 94%,而 El potrero 的可再生部分为 97%。此外,对于 Campo serio,获得的最佳系统的 CO 2 排放量确定为纯柴油机组的 6.1%,而后者比率确定为 El potrero 的 2.7% 和 Silicucho 的 9.9%。本文获得并提出的最佳配置可作为针对所考虑的社区和具有相似特征(人口和气候条件)的其他村庄设计电气化系统(以最小化成本)的指南。
摘要 - 农业是人类食物的唯一提供者。大多数农业机械由化石燃料驱动,这会增加温室气体排放,进而加速气候变化。通过推广太阳能、风能、生物质能、潮汐能、地热能、小型水力发电、生物燃料和波浪能等可再生资源,可以减轻这种环境破坏。这些可再生资源对农业产业具有巨大的潜力。应通过补贴鼓励农民使用可再生能源技术。可持续农业的概念在于最大限度地提高作物产量和保持经济稳定,同时最大限度地减少有限自然资源的使用和有害的环境影响。可持续农业还依赖于补充土壤,同时最大限度地减少不可再生资源的使用,例如用于将大气中的氮转化为合成肥料的天然气,以及矿石,例如磷酸盐或用于柴油发电机抽水灌溉的化石燃料。因此,有必要促进可再生能源系统在可持续农业中的应用,例如太阳能光伏水泵和电力、温室技术、收获后加工的太阳能干燥机和太阳能热水器。在偏远的农业用地中,与柴油发电机组相比,地下潜水太阳能光伏水泵既经济可行,又是一种环保选择。如果寒冷气候区某些植物的生长气候条件不利,则需要使用可再生能源技术,例如温室,以保持植物和蔬菜生长所需的最佳植物环境温度条件。本文介绍了使用温室种植植物和蔬菜以及使用太阳能光伏水泵实现可持续农业和环境的经济效益。清洁发展为工业化国家提供了投资发展中国家减排项目的激励,以最低成本减少二氧化碳排放。本文简要讨论了清洁发展机制,以利用可再生系统实现可持续农业发展,特别是印度和世界范围内的太阳能光伏水泵。本文将农学的各个方面与生态、环境、经济和社会变革联系起来,详细阐述了可再生能源在农业中的作用。
图 II.1:能源部项目 LCC 和 ECC 申请及授予流程 33 图 II.2:适用于该项目的国家许可流程流程图 34 图 III.1:项目区域位置图 41 图 III.2:项目布局规划 42图 III.3:拟议的项目活动和时间表 43 图 III.4:疫苗的多样性和复杂性(来源:美国药物评论,2016 年) 44 图 III.5:疫苗工艺开发的概述(来源:美国药物评论)药物审查, 2016 年) 45 图 III.6:疫苗研究与开发(从开始到结束:来源:C OLE-P ARMER) 45 图 IV.1:拟议项目工地的照片 51 图 IV.2:孟加拉国地震分区图 53 图 IV.3:孟加拉国气候区 55 图 IV.4:马达利普尔气候图,显示全年平均每日最低和最高温度、降水量和风速 56 图 IV.5:马达利普尔站(左)和 K Hulna 地区的年降水量趋势和季节周期(右) 56 图 IV.6:M ADARIPUR 气象站的年度风速和风向 57 图 IV.7:2008 年至 2018 年 G OPLAGANJ 区地下水位变化(FA027 表示 G OPALGANJ SADAR) 57 图 IV.8:现场地表水和地下水采样 59 图 IV.9:2020 年 G OPLAGANJ 区雨季和旱季地下水盐度 60 图 IV.10:2020 年旱季和雨季地下水位变化。 60 图 IV.11:现场空气质量数据水平测量(EDCL 内外,G OPLAGANJ)64 图 IV.12:G OPALGANJ S ADAR 拟建疫苗工厂 4 千米范围内的土地利用地图 67 图 IV.13:G OPALGANJ 的气候参数变化 71 图 VI.1:与主要利益相关方的焦点小组讨论和磋商会议 89 图 VI.2:KII 期间的照片 90
摘要:磷化合物工业,特别是可溶性矿物肥料工业规模非常大。但是,剩余的磷资源可供勘探 60-80 年,开采出的磷中只有不到 10-15% 可以用于植物。其他磷则作为环境污染物消失 [1, 2]。传统磷工业的“绿色”替代方案是直接利用微生物溶解不溶性磷矿石。这项工作的目的是基于在俄罗斯气候区变化和独特生态位的考察工作,尽可能广泛地创建和开发活性磷酸盐溶解微生物 (PSM) 的收集。该收集用于开发区域磷生物肥料和其他需求。方法。组织了 15 次长期和短期考察,前往各种气候(从亚北极到亚热带)和生态位(矿山、保护区、洞穴、火山等),收集最有效的 PSM。通过定量控制矿物液体培养基中的 PS 活性和功效、使用多种碳源、检查“非卤化”分离物,加强了磷酸三钙 (TCP) 琼脂 [3,4] 上“透明区”的半定量和矛盾选择方法。选定的 PSM 被储存在收集中并筛选其他潜在活性。结果。广泛的远征搜索(超过 100 个生态位)允许创建具有可变特征培养物的大型 PSM 集合(超过 700 个)。新选择的分离物属于不同的微生物群:从革兰氏阴性杆菌、球菌到革兰氏阳性孢子杆菌和酵母。许多分离物不是从土壤或根际中选出的,而是从营养和磷严重缺乏的生态位中选出的。三分之一的收集的非卤化培养物显示出最高水平的 PSA。与已知的最佳 PSM [7] 相比,许多分离物对 TCP 和天然 P 矿石的 PS 活性非常高,并且具有更好的技术性能。作为生物肥料,几种菌株在盆栽和田间试验中成功测试。PS 联合体的使用表明,可以从贫矿石和废物中连续流动 P,从而回收 P 并保护环境 [5,6]。许多 PSM 的有用特性是高水平的杀菌剂活性。PSM 收集对于筛选代谢物、酶(有机酸、生物聚合物、植酸酶等)非常有前景。这项工作得到了 ISTC 项目 #2754.2、#3107 的支持。